Regular and self-similar solutions of nonlinear Schrodinger equations

被引:30
|
作者
Ribaud, F [1 ]
Youssfi, A [1 ]
机构
[1] Univ Marne Vallee, Equipe Anal & Math Appl, F-77454 Marne La Vallee 2, France
来源
关键词
D O I
10.1016/S0021-7824(99)80004-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem for the nonlinear Schrodinger equations with nonlinear term \u\(alpha)u. For some admissible alpha we show the existence of global solutions and we calculate the regularity of those solutions. Also we give some necessary conditions and some sufficient conditions on initial data for the existence of self-similar solutions. (C) Elsevier, Paris.
引用
收藏
页码:1065 / 1079
页数:15
相关论文
共 50 条
  • [21] Global solutions and self-similar solutions of nonlinear wave equations
    Ribaud, F
    Youssfi, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (01): : 33 - 36
  • [22] On the Stability of Self-Similar Solutions to Nonlinear Wave Equations
    Ovidiu Costin
    Roland Donninger
    Irfan Glogić
    Min Huang
    Communications in Mathematical Physics, 2016, 343 : 299 - 310
  • [23] On the Stability of Self-Similar Solutions to Nonlinear Wave Equations
    Costin, Ovidiu
    Donninger, Roland
    Glogic, Irfan
    Huang, Min
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 343 (01) : 299 - 310
  • [24] Self-similar solutions of Schrodinger flows
    Ding, Weiyue
    Tang, Hongyan
    Zeng, Chongchun
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (02) : 267 - 277
  • [25] Envelope self-similar solutions for the nonautonomous and inhomogeneous nonlinear Schrodinger equation
    Dai, Chaoqing
    Zhu, Shiqun
    Zhang, Jiefang
    OPTICS COMMUNICATIONS, 2010, 283 (19) : 3784 - 3791
  • [26] SELF-SIMILAR SOLUTIONS OF THE PSEUDOCONFORMALLY INVARIANT NONLINEAR SCHRODINGER-EQUATION
    KAVIAN, O
    WEISSLER, FB
    MICHIGAN MATHEMATICAL JOURNAL, 1994, 41 (01) : 151 - 173
  • [27] Exact solutions and self-similar symmetries of a nonlocal nonlinear Schrodinger equation
    Horikis, Theodoros P.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (07):
  • [28] Chirped self-similar solutions of a generalized nonlinear Schrodinger equation model
    Chen, SH
    Yi, L
    PHYSICAL REVIEW E, 2005, 71 (01):
  • [29] Advanced Analytic Self-Similar Solutions of Regular and Irregular Diffusion Equations
    Barna, Imre Ferenc
    Matyas, Laszlo
    MATHEMATICS, 2022, 10 (18)
  • [30] BESOV SPACES AND SELF-SIMILAR SOLUTIONS FOR NONLINEAR EVOLUTION EQUATIONS
    Miao Changxing
    Zhang Bo
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2006, 19 (01): : 26 - 47