Non-equilibrium quantum theory for nanodevices based on the Feynman-Vernon influence functional

被引:99
|
作者
Jin, Jinshuang [1 ,2 ,3 ]
Tu, Matisse Wei-Yuan [1 ,2 ]
Zhang, Wei-Min [1 ,2 ]
Yan, YiJing [4 ]
机构
[1] Natl Cheng Kung Univ, Dept Phys, Tainan 70101, Taiwan
[2] Natl Cheng Kung Univ, Ctr Quantum Informat Sci, Tainan 70101, Taiwan
[3] Hangzhou Normal Univ, Dept Phys, Hangzhou 310036, Zhejiang, Peoples R China
[4] Hong Kong Univ Sci & Technol, Dept Chem, Kowloon, Hong Kong, Peoples R China
来源
NEW JOURNAL OF PHYSICS | 2010年 / 12卷
基金
中国国家自然科学基金;
关键词
TIME-DEPENDENT TRANSPORT; BROWNIAN-MOTION; ANOMALIES;
D O I
10.1088/1367-2630/12/8/083013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we present a non-equilibrium quantum theory for transient electron dynamics in nanodevices based on the Feynman-Vernon influence functional. Applying the exact master equation for nanodevices we recently developed to the more general case in which all the constituents of a device vary in time in response to time-dependent external voltages, we obtained non-perturbatively the transient quantum transport theory in terms of the reduced density matrix. The theory enables us to study transient quantum transport in nanostructures with back-reaction effects from the contacts, with non-Markovian dissipation and decoherence being fully taken into account. For a simple illustration, we apply the theory to a single-electron transistor subjected to ac bias voltages. The non-Markovian memory structure and the nonlinear response functions describing transient electron transport are obtained.
引用
收藏
页数:30
相关论文
共 50 条