Towards Tree Green Crown Volume: A Methodological Approach Using Terrestrial Laser Scanning

被引:15
|
作者
Zhu, Zihui [1 ]
Kleinn, Christoph [1 ]
Noelke, Nils [1 ]
机构
[1] Univ Gottingen, Fac Forest Sci & Forest Ecol, Forest Inventory & Remote Sensing, Busgenweg 5, D-37077 Gottingen, Germany
关键词
urban trees; green crown volume; point cloud; k-means; CLASSIFICATION; SCALE; LEAF; WOOD;
D O I
10.3390/rs12111841
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Crown volume is a tree attribute relevant in a number of contexts, including photosynthesis and matter production, storm resistance, shadowing of lower layers, habitat for various taxa. While commonly the total crown volume is being determined, for example by wrapping a convex hull around the crown, we present here a methodological approach towards assessing the tree green crown volume (TGCVol), the crown volume with a high density of foliage, which we derive by terrestrial laser scanning in a case study of solitary urban trees. Using the RGB information, we removed the hits on stem and branches within the tree crown and used the remaining leaf hits to determine TGCVol from k-means clustering and convex hulls for the resulting green 3D clusters. We derived a tree green crown volume index (TGCVI) relating the green crown volume to the total crown volume. This TGCVI is a measure of how much a crown is "filled with green" and scale-dependent (a function of specifications of the k-means clustering). Our study is a step towards a standardized assessment of tree green crown volume. We do also address a number of remaining methodological challenges.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Tree Root System Characterization and Volume Estimation by Terrestrial Laser Scanning and Quantitative Structure Modeling
    Smith, Aaron
    Astrup, Rasmus
    Raumonen, Pasi
    Liski, Jari
    Krooks, Anssi
    Kaasalainen, Sanna
    Akerblom, Markku
    Kaasalainen, Mikko
    FORESTS, 2014, 5 (12): : 3274 - 3294
  • [22] Tree Stem and Height Measurements using Terrestrial Laser Scanning and the RANSAC Algorithm
    Olofsson, Kenneth
    Holmgren, Johan
    Olsson, Hakan
    REMOTE SENSING, 2014, 6 (05): : 4323 - 4344
  • [23] THE EFFECT OF WIND ON TREE STEM PARAMETER ESTIMATION USING TERRESTRIAL LASER SCANNING
    Vaaja, M. T.
    Virtanen, J. -P.
    Kurkela, M.
    Lehtola, V.
    Hyyppa, J.
    Hyyppa, H.
    XXIII ISPRS CONGRESS, COMMISSION VIII, 2016, 3 (08): : 117 - 122
  • [24] Estimating residual biomass of olive tree crops using terrestrial laser scanning
    Fernandez-Sarria, A.
    Lopez-Cortes, I.
    Estornell, J.
    Velazquez-Marti, B.
    Salazar, D.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 75 : 163 - 170
  • [25] Assessing tree dendrometrics in young regenerating plantations using terrestrial laser scanning
    Li, Ying
    Hess, Carsten
    von Wehrden, Henrik
    Haerdtle, Werner
    von Oheimb, Goddert
    ANNALS OF FOREST SCIENCE, 2014, 71 (04) : 453 - 462
  • [26] Assessing tree dendrometrics in young regenerating plantations using terrestrial laser scanning
    Ying Li
    Carsten Hess
    Henrik von Wehrden
    Werner Härdtle
    Goddert von Oheimb
    Annals of Forest Science, 2014, 71 : 453 - 462
  • [27] ESTIMATING SINGLE TREE STEM AND BRANCH BIOMASS USING TERRESTRIAL LASER SCANNING
    Ishak, Nurliyana Izzati
    Abu Bakar, Md Afif
    Rahman, Muhammad Zulkarnain Abdul
    Rasib, Abd Wahid
    Kanniah, Kasturi Devi
    Shin, Alvin Lau Meng
    Razak, Khamarrul Azahari
    JURNAL TEKNOLOGI, 2015, 77 (26): : 59 - 67
  • [28] Evaluation of Single Tree Parameters Measurement Using Terrestrial Laser Scanning Technique
    Mohammed, Habiba Ibrahim
    Majid, Zulkepli
    ADVANCED SCIENCE LETTERS, 2018, 24 (06) : 4006 - 4014
  • [29] Conifer crown profile models from terrestrial laser scanning
    Ferrarese, Jena
    Affleck, David
    Seielstad, Carl
    SILVA FENNICA, 2015, 49 (01)
  • [30] Terrestrial laser scanning as a tool for assessing tree growth
    Sheppard, Jonathan
    Morhart, Christopher
    Hackenberg, Jan
    Spiecker, Heinrich
    IFOREST-BIOGEOSCIENCES AND FORESTRY, 2017, 10 : 172 - 179