A comparison of machine learning algorithms for the surveillance of autism spectrum disorder

被引:7
|
作者
Lee, Scott H. [1 ]
Maenner, Matthew J. [1 ]
Heilig, Charles M. [1 ]
机构
[1] Ctr Dis Control & Prevent, Atlanta, GA 30333 USA
来源
PLOS ONE | 2019年 / 14卷 / 09期
关键词
UNITED-STATES; CHILDREN;
D O I
10.1371/journal.pone.0222907
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objective The Centers for Disease Control and Prevention (CDC) coordinates a labor-intensive process to measure the prevalence of autism spectrum disorder (ASD) among children in the United States. Random forests methods have shown promise in speeding up this process, but they lag behind human classification accuracy by about 5%. We explore whether more recently available document classification algorithms can close this gap. Materials and methods Using data gathered from a single surveillance site, we applied 8 supervised learning algorithms to predict whether children meet the case definition for ASD based solely on the words in their evaluations. We compared the algorithms' performance across 10 random train-test splits of the data, using classification accuracy, F1 score, and number of positive calls to evaluate their potential use for surveillance. Results Across the 10 train-test cycles, the random forest and support vector machine with Naive Bayes features (NB-SVM) each achieved slightly more than 87% mean accuracy. The NB-SVM produced significantly more false negatives than false positives (P = 0.027), but the random forest did not, making its prevalence estimates very close to the true prevalence in the data. The best-performing neural network performed similarly to the random forest on both measures. Discussion The random forest performed as well as more recently available models like the NB-SVM and the neural network, and it also produced good prevalence estimates. NB-SVM may not be a good candidate for use in a fully-automated surveillance workflow due to increased false negatives. More sophisticated algorithms, like hierarchical convolutional neural networks, may not be feasible to train due to characteristics of the data. Current algorithms might perform better if the data are abstracted and processed differently and if they take into account information about the children in addition to their evaluations. Conclusion Deep learning models performed similarly to traditional machine learning methods at predicting the clinician-assigned case status for CDC's autism surveillance system. While deep learning methods had limited benefit in this task, they may have applications in other surveillance systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Autism Spectrum Disorder Classification Using Machine Learning and Deep Learning-A Survey
    Reeja S.R.
    Mounika S.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2023, 9 (01)
  • [32] Wearable-Sensors-Based Platform for Gesture Recognition of Autism Spectrum Disorder Children Using Machine Learning Algorithms
    Siddiqui, Uzma Abid
    Ullah, Farman
    Iqbal, Asif
    Khan, Ajmal
    Ullah, Rehmat
    Paracha, Sheroz
    Shahzad, Hassan
    Kwak, Kyung-Sup
    SENSORS, 2021, 21 (10)
  • [33] Interpretable Machine Learning Reveals Dissimilarities Between Subtypes of Autism Spectrum Disorder
    Garbulowski, Mateusz
    Smolinska, Karolina
    Diamanti, Klev
    Pan, Gang
    Maqbool, Khurram
    Feuk, Lars
    Komorowski, Jan
    FRONTIERS IN GENETICS, 2021, 12
  • [34] A Novel Machine Learning Based Framework for Detection of Autism Spectrum Disorder (ASD)
    Sharif, Hamza
    Khan, Rizwan Ahmed
    APPLIED ARTIFICIAL INTELLIGENCE, 2022, 36 (01)
  • [35] Efficient Machine Learning Models for Early Stage Detection of Autism Spectrum Disorder
    Bala, Mousumi
    Ali, Mohammad Hanif
    Satu, Md Shahriare
    Hasan, Khondokar Fida
    Moni, Mohammad Ali
    ALGORITHMS, 2022, 15 (05)
  • [36] Detection of autism spectrum disorder (ASD) in children and adults using machine learning
    Farooq, Muhammad Shoaib
    Tehseen, Rabia
    Sabir, Maidah
    Atal, Zabihullah
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [37] A REVIEW OF MACHINE LEARNING TECHNIQUES FOR FEATURE BASED CLASSIFICATION OF AUTISM SPECTRUM DISORDER
    Verma, Manvi
    Kumar, Dinesh
    Arora, Tanvi
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2020, 19 (05): : 387 - 396
  • [38] Analysis of Autism Spectrum Disorder Prediction using various Machine Learning Models
    Kumaravel, V
    HelenPrabha, K.
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [39] A Review of Machine Learning Methods of Feature Selection and Classification for Autism Spectrum Disorder
    Rahman, Md. Mokhlesur
    Usman, Opeyemi Lateef
    Muniyandi, Ravie Chandren
    Sahran, Shahnorbanun
    Mohamed, Suziyani
    Razak, Rogayah A.
    BRAIN SCIENCES, 2020, 10 (12) : 1 - 23
  • [40] Efficient Autism Spectrum Disorder Prediction with Eye Movement: A Machine Learning Framework
    Liu, Wenbo
    Yu, Zhiding
    Raj, Bhiksha
    Yi, Li
    Zou, Xiaobing
    Li, Ming
    2015 INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION (ACII), 2015, : 649 - 655