Construction of Maxwell Points in Left-Invariant Optimal Control Problems

被引:0
|
作者
Podobryaev, A., V [1 ]
机构
[1] Russian Acad Sci, Ailamazyan Program Syst Inst, Pereslavl Zalesskii 152021, Yaroslavl Regio, Russia
基金
俄罗斯科学基金会;
关键词
Symmetry; Maxwell points; cut locus; geometric control theory; Riemannian geometry; sub-Riemannian geometry; SYMMETRIES;
D O I
10.1134/S008154382105014X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider left-invariant optimal control problems on connected Lie groups. The Pontryagin maximum principle gives necessary optimality conditions. Namely, the extremal trajectories are the projections of trajectories of the corresponding Hamiltonian system on the cotangent bundle of the Lie group. The Maxwell points (i.e., the points where two different extremal trajectories meet each other) play a key role in the study of optimality of extremal trajectories. The reason is that an extremal trajectory cannot be optimal after a Maxwell point. We introduce a general construction for Maxwell points depending on the algebraic structure of the Lie group.
引用
收藏
页码:190 / 197
页数:8
相关论文
共 50 条
  • [31] The Left-Invariant Contact Metric Structure on the Sol Manifold
    Pan'zhenskii, V., I
    Rastrepina, A. O.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI, 2020, 162 (01): : 77 - 90
  • [32] On the boundary behavior of left-invariant Hitchin and hypo flows
    Belgun, Florin
    Cortes, Vicente
    Freibert, Marco
    Goertsches, Oliver
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 92 : 41 - 62
  • [33] MOTION CONTROL OF DRIFT-FREE, LEFT-INVARIANT SYSTEMS ON LIE-GROUPS
    LEONARD, NE
    KRISHNAPRASAD, PS
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (09) : 1539 - 1554
  • [34] Left-invariant geometries on SU(2) are uniformly doubling
    Eldredge, Nathaniel
    Gordina, Maria
    Saloff-Coste, Laurent
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2018, 28 (05) : 1321 - 1367
  • [35] Left-Invariant Lorentzian Flat Metrics on Lie Groups
    Ben Haddou, Malika Ait
    Boucetta, Mohamed
    Lebzioui, Hicham
    JOURNAL OF LIE THEORY, 2012, 22 (01) : 269 - 289
  • [36] COMPLETENESS OF LEFT-INVARIANT METRICS ON LIE-GROUPS
    ALEKSEEVSKII, DV
    PUTKO, BA
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1987, 21 (03) : 233 - 234
  • [37] ON THE NONEXISTENCE OF LEFT-INVARIANT RICCI SOLITONS — A CONJECTURE AND EXAMPLES
    Y. TAKETOMI
    H. TAMARU
    Transformation Groups, 2018, 23 : 257 - 270
  • [38] Dolbeault cohomology of nilmanifolds with left-invariant complex structure
    Rollenske, Soenke
    COMPLEX AND DIFFERENTIAL GEOMETRY, 2011, 8 : 369 - 392
  • [39] CLASS OF LEFT-INVARIANT DIFFERENTIAL FORMS AND SYSTEMS ON A LIE GROUP
    GOZE, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (07): : 499 - 502
  • [40] Left-Invariant PID Control Almost Globally Stabilizes Rigid-Body Attitudes with Right-Invariant Biases
    Zhang, Zhifei
    Liu, Guowei
    Hou, Beiping
    Li, Jinrong
    ELECTRONICS, 2023, 12 (23)