Dynamic modelling of chemical reaction systems with neural networks and hybrid models

被引:1
|
作者
Zander, HJ
Dittmeyer, R
Wagenhuber, J
机构
[1] Univ Erlangen Nurnberg, Lehrstuhl Tech Chem 1, D-91058 Erlangen, Germany
[2] Siemens AG, Zentral Abt Tech, Abt Informat & Kommunikat, D-81730 Munich, Germany
关键词
D O I
10.1002/cite.330710311
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
[No abstract available]
引用
收藏
页码:234 / 237
页数:4
相关论文
共 50 条
  • [11] Modelling of nonlinear dynamic systems using support vector neural networks
    Chan, WC
    Chan, CW
    Cheung, KC
    Harris, CJ
    ARTIFICIAL INTELLIGENCE IN REAL-TIME CONTROL 2000, 2001, : 213 - 218
  • [12] Modelling of non-linear dynamic systems by using neural networks
    Horvath, G
    Dunay, R
    ISIE'96 - PROCEEDINGS OF THE IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1 AND 2, 1996, : 92 - 97
  • [13] On the modelling of nonlinear dynamic systems using support vector neural networks
    Chan, WC
    Chan, CW
    Cheung, KC
    Harris, CJ
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2001, 14 (02) : 105 - 113
  • [14] Hybrid Simulation of Dynamic Reaction Networks in Multi-Level Models
    Helms, Tobias
    Wilsdorf, Pia
    Uhrmacher, Adelinde M.
    SIGSIM-PADS'18: PROCEEDINGS OF THE 2018 ACM SIGSIM CONFERENCE ON PRINCIPLES OF ADVANCED DISCRETE SIMULATION, 2018, : 133 - 144
  • [15] Qualitative modelling for automatic identification of mathematical models of chemical reaction systems
    Schaich, D
    Becker, R
    King, R
    CONTROL ENGINEERING PRACTICE, 2001, 9 (12) : 1373 - 1381
  • [16] Dynamic modelling using neural networks
    Schenker, B
    Agarwal, M
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1997, 28 (12) : 1285 - 1298
  • [17] Hybrid Neural Networks as Prediction Models
    Rojek, Izabela
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT II, 2010, 6114 : 88 - 95
  • [18] Inference of Chemical Reaction Networks Using Hybrid S-system Models
    Searson, Dominic P.
    Willis, Mark J.
    Horne, Simon J.
    Wright, Allen R.
    CHEMICAL PRODUCT AND PROCESS MODELING, 2007, 2 (01):
  • [19] Neural networks on the dynamic models updating
    Lopes, TAP
    de Andrade, OP
    Vianna, AL
    DATA MINING, 1998, : 275 - 287
  • [20] Modelling of direction-dependent dynamic processes: A comparison of Wiener models and neural networks
    Tan, AH
    Godfrey, KR
    IMTC 2002: PROCEEDINGS OF THE 19TH IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1 & 2, 2002, : 215 - 220