A generalized inductive limit strict topology on the space of bounded continuous

被引:2
|
作者
Aguayo, Jose [1 ]
Navarro, Samuel [2 ]
Ojeda, Jacqueline [1 ]
机构
[1] Univ Concepcion, Fac Ciencias Fis & Matemat, Dept Matemat, Concepcion, Chile
[2] Univ Santiago Chile, Dept Matemat, Santiago, Chile
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2007年 / 18卷 / 04期
关键词
nonarchimedean structures; strict topologies; zero-dimensional spaces; spaces of nonarchimedean measures;
D O I
10.1016/S0019-3577(07)80057-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A generalized inductive limit strict topology beta(infinity) is defined on C-b(X, E), the space of all bounded, continuous functions from a zero-dimensional Hausdorff space X into a locally K-convex space E, where K is a field with a nontrivial and nonarchimedean valuation, for which K is a complete ultrametric space. Many properties of the topology beta(infinity) are proved and the dual Of (C-b (X, E), beta(infinity)) is studied.
引用
收藏
页码:485 / 494
页数:10
相关论文
共 50 条