Oxygen-enriched electrolytes based on perfluorochemicals for high-capacity lithium-oxygen batteries

被引:32
|
作者
Nishikami, Yuki [1 ]
Konishi, Toshihiro [1 ]
Omoda, Ryo [2 ]
Aihara, Yuichi [2 ]
Oyaizu, Kenichi [1 ]
Nishide, Hiroyuki [1 ]
机构
[1] Waseda Univ, Dept Appl Chem, Tokyo 1698555, Japan
[2] Samsung R&D Inst Japan Co, Osaka 5620036, Japan
关键词
NONAQUEOUS LI-O-2 BATTERIES; BLOOD SUBSTITUTES; AIR BATTERY; PERFORMANCE; TRANSPORT; PERMEATION; SOLUBILITY; REDUCTION; STABILITY; MEMBRANES;
D O I
10.1039/c5ta02219c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrolytes highly enriched with oxygen for lithium-oxygen (Li-O-2) batteries were prepared by combining perfluorohexyl bromide as an oxygen-uptake perfluorochemical (PFC) medium with lithium perfluorooctane sulfonate (LiPFOS) as a perfluoro-surfactant and a supporting electrolyte, which allowed an exceptionally high miscibility of PFCs with tetraethylene glycol dimethyl ether (TEGDME). The electrochemical reduction current of oxygen was enhanced three times in the LiPFOS-TEGDME electrolyte with ca. 60 wt% PFC content in comparison with that of a conventional Li-O-2 battery electrolyte, which was ascribed to the high oxygen solubility of the electrolyte. A Li-O-2 cell fabricated with the PFC-based electrolyte exhibited an excellent discharging capacity of 6500 mA h g(-1) which was approximately 1.5 times higher than that obtained with the conventional electrolyte.
引用
收藏
页码:10845 / 10850
页数:6
相关论文
共 50 条
  • [41] Aprotic Lithium-Oxygen Batteries Based on Nonsolid Discharge Products
    Song, Li-Na
    Zheng, Li-Jun
    Wang, Xiao-Xue
    Kong, De-Chen
    Wang, Yi-Feng
    Wang, Yue
    Wu, Jia-Yi
    Sun, Yu
    Xu, Ji-Jing
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (02) : 1305 - 1317
  • [42] Exploring Metal Nanoclusters for Lithium-Oxygen Batteries
    Lu, Meihua
    Qu, Jianglan
    Yao, Qiaofeng
    Xu, Chaohe
    Zhan, Yi
    Xie, Jianping
    Lee, Jim Yang
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (09) : 5488 - 5496
  • [43] Hot lithium-oxygen batteries charge ahead
    Feng, Shuting
    Lunger, Jaclyn R.
    Johnson, Jeremiah A.
    Shao-Horn, Yang
    SCIENCE, 2018, 361 (6404) : 758 - 758
  • [44] Understanding the Reaction Interface in Lithium-Oxygen Batteries
    Huang, Jun
    Peng, Zhangquan
    BATTERIES & SUPERCAPS, 2019, 2 (01) : 37 - 48
  • [45] Progress in Sealed Lithium-Oxygen Batteries Based on the Oxygen Anion Charge Compensation Mechanism
    Zeng, Linhui
    Qiao, Yu
    ENERGY & FUELS, 2024, 38 (19) : 18386 - 18394
  • [47] LITHIUM-OXYGEN BATTERIES The reaction mechanism revealed
    Sun, Yang-Kook
    Yoon, Chong S.
    NATURE NANOTECHNOLOGY, 2017, 12 (06) : 503 - 504
  • [48] Recent advances in solid state lithium-oxygen batteries: electrolytes and multi-functions
    Han, Yuyang
    Zhang, Xinqun
    Lu, Bing
    Li, Yuanyuan
    Shao, Changxiang
    Guo, Qiang
    Zhang, Zhipan
    NANO FUTURES, 2020, 4 (03) : 1 - 13
  • [49] Architecture Transformations of Ultrahigh Areal Capacity Air Cathodes for Lithium-Oxygen Batteries
    Greenburg, Louisa C.
    Plaza-Rivera, Christian O.
    Kim, Jae-Woo
    Connell, John W.
    Lin, Yi
    BATTERIES & SUPERCAPS, 2021, 4 (01) : 120 - 130
  • [50] Mechanistic Evolution of Aprotic Lithium-Oxygen Batteries
    Li, Fujun
    Chen, Jun
    ADVANCED ENERGY MATERIALS, 2017, 7 (24)