Simulation of a strong van der Waals blockade in a dense ultracold gas

被引:13
|
作者
Hernandez, J. V. [1 ]
Robicheaux, F. [1 ]
机构
[1] Auburn Univ, Dept Phys, Auburn, AL 36849 USA
关键词
D O I
10.1088/0953-4075/41/4/045301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report on simulations involving the blockade effect on a dense ultracold gas. The blockade effect is seen when the interaction energy between two excited Rydberg atoms is large enough to shift the two-excitation state out of resonance. In this paper we investigate a system that exhibits a strong van der Waals blockade, where only one out of thousands of atoms can be excited per blockade volume. With such a high number of atoms blockaded, the collective oscillation rate of an ensemble of atoms is much faster than the single atom oscillation rate. We examine the effects of this high density and the effects of a non-uniform density distribution as commonly seen in a magneto-optical trap (MOT). We use three different models and compare them to recent experimental data. The agreement between theory and experiment, although qualitative, suggests that the non-uniformity of the density within a blockade region presents a new challenge to theoretical models.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] The effects of gravitational and magnetic fields on the propagation of cylindrical strong shock waves in a van der Waals gas
    Anand, R. K.
    Singh, Sewa
    PHYSICA SCRIPTA, 2024, 99 (03)
  • [32] Rabi oscillations between ground and Rydberg states and van der Waals blockade in a mesoscopic frozen Rydberg gas
    Reetz-Lamour, M.
    Deiglmayr, J.
    Amthor, T.
    Weidemueller, M.
    NEW JOURNAL OF PHYSICS, 2008, 10
  • [33] Strong pressure-energy correlations in van der waals liquids
    Pedersen, Ulf R.
    Bailey, Nicholas P.
    Schroder, Thomas B.
    Dyre, Jeppe C.
    PHYSICAL REVIEW LETTERS, 2008, 100 (01)
  • [34] Photonic crystals for controlling strong coupling in van der Waals materials
    Gogna, Rahul
    Zhang, Long
    Wang, Zhaorong
    Deng, Hui
    OPTICS EXPRESS, 2019, 27 (16) : 22700 - 22707
  • [35] Strong light-matter coupling in van der Waals materials
    Luo, Yuan
    Zhao, Jiaxin
    Fieramosca, Antonio
    Guo, Quanbing
    Kang, Haifeng
    Liu, Xiaoze
    Liew, Timothy C. H.
    Sanvitto, Daniele
    An, Zhiyuan
    Ghosh, Sanjib
    Wang, Ziyu
    Xu, Hongxing
    Xiong, Qihua
    LIGHT-SCIENCE & APPLICATIONS, 2024, 13 (01)
  • [36] Strong van der Waals Adhesion of a Polymer Film on Rough Substrates
    Klatt, Juliane
    Barcellona, Pablo
    Bennett, Robert
    Bokareva, Olga S.
    Feth, Hagen
    Rasch, Andreas
    Reith, Patrick
    Buhnnann, Stefan Yoshi
    LANGMUIR, 2017, 33 (21) : 5298 - 5303
  • [37] Increase in Axial Compressibility in a Spinning Van der Waals Gas
    Liu, Yun
    Liu, Hao
    Fu, Zhen-Guo
    Zhou, Weimin
    ENTROPY, 2021, 23 (02) : 1 - 13
  • [38] Simulation of Transport Moire Pattern in Van Der Waals Heterostructures
    Li, Xiangnan
    Lv, Yawei
    Tong, Qingjun
    Liao, Lei
    Li, Kenli
    Jiang, Changzhong
    IEEE ELECTRON DEVICE LETTERS, 2023, 44 (03) : 544 - 547
  • [39] Evaluating the efficiency of the Carnot cycle with a van der Waals gas
    Sarafian, H
    CHALLENGING THE BOUNDARIES OF SYMBOLIC COMPUTATION, 2003, : 121 - 128
  • [40] Propagation of weak waves in a dusty, van der Waals gas
    Chadha, Meera
    Jena, J.
    MECCANICA, 2016, 51 (09) : 2145 - 2157