Testing gravity with cold-atom interferometers

被引:131
|
作者
Biedermann, G. W. [1 ]
Wu, X. [1 ]
Deslauriers, L. [1 ]
Roy, S. [1 ]
Mahadeswaraswamy, C. [1 ]
Kasevich, M. A. [1 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
关键词
CONSTANT; LAW;
D O I
10.1103/PhysRevA.91.033629
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a horizontal gravity gradiometer atom interferometer for precision gravitational tests. The horizontal configuration is superior for maximizing the inertial signal in the atom interferometer from a nearby proof mass. In our device, we have suppressed spurious noise associated with the horizonal configuration to achieve a differential acceleration sensitivity of 4.2x10(-9) g/root Hz over a 70-cm baseline or 3.0x10(-9) g/root Hz inferred per accelerometer. Using the performance of this instrument, we characterize the results of possible future gravitational tests. We demonstrate a statistical uncertainty of 3x10(-4) for a proof-of-concept measurement of the gravitational constant that is competitive with the present limit of 1.2x10(-4) using other techniques. From this measurement, we provide a statistical constraint on a Yukawa-type fifth force at 8x10(-3) near the poorly known length scale of 10 cm. Limits approaching 10(-5) appear feasible. We discuss improvements that can enable uncertainties falling well below 10(-5) for both experiments.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Analytical calculation of cold-atom scattering
    Flambaum, V.V.
    Gribakin, G.F.
    Harabati, C.
    Physical Review A - Atomic, Molecular, and Optical Physics, 1999, 59 (03): : 1998 - 2005
  • [22] Cold-atom systems and the scaling limit
    Tomio, L.
    FEW-BODY SYSTEMS, 2008, 43 (1-4) : 207 - 212
  • [23] Monitoring currents in cold-atom circuis
    Safaei, S.
    Kwek, L-C
    Dumke, R.
    Amico, L.
    PHYSICAL REVIEW A, 2019, 100 (01)
  • [24] Cold-atom scanning probe microscopy
    Gierling, M.
    Schneeweiss, P.
    Visanescu, G.
    Federsel, P.
    Haeffner, M.
    Kern, D. P.
    Judd, T. E.
    Guenther, A.
    Fortagh, J.
    NATURE NANOTECHNOLOGY, 2011, 6 (07) : 446 - 451
  • [25] Analytical calculation of cold-atom scattering
    Flambaum, VV
    Gribakin, GF
    Harabati, C
    PHYSICAL REVIEW A, 1999, 59 (03): : 1998 - 2005
  • [26] Potential of cold-atom airborne gravimetry to improve coastal gravity field and quasigeoid modelling
    Vu, Dinh Toan
    Bonvalot, Sylvain
    Seoane, Lucia
    Gabalda, Germinal
    Remy, Dominique
    Bruinsma, Sean
    Bidel, Yannick
    Bresson, Alexandre
    Zahzam, Nassim
    Rouxel, Didier
    Salauen, Corinne
    Lalancette, Marie-Francoise
    Forsberg, Rene
    Jensen, Tim
    Jamet, Olivier
    JOURNAL OF GEODESY, 2024, 98 (04)
  • [27] Intense continuous cold-atom source
    Huntington, William
    Glick, Jeremy
    Borysow, Michael
    Heinzen, Daniel J.
    PHYSICAL REVIEW A, 2023, 107 (01)
  • [28] Cold-atom microscope shapes up
    Christian L. Degen
    Jonathan P. Home
    Nature Nanotechnology, 2011, 6 : 399 - 400
  • [29] PHYSICS Controlling Cold-Atom Conductivity
    Fallani, L.
    Inguscio, M.
    SCIENCE, 2008, 322 (5907) : 1480 - 1481
  • [30] Coherence in a cold-atom photon switch
    Li, Weibin
    Lesanovsky, Igor
    PHYSICAL REVIEW A, 2015, 92 (04):