Existence, Comparison, and Convergence Results for a Class of Elliptic Hemivariational Inequalities

被引:8
|
作者
Gariboldi, Claudia M. [1 ]
Migorski, Stanislaw [2 ,3 ]
Ochal, Anna [3 ]
Tarzia, Domingo A. [4 ]
机构
[1] Univ Nac Rio Cuarto, Dept Matemat, FCEFQyN, Ruta 36 Km 601, RA-5800 Rio Cuarto, Argentina
[2] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China
[3] Jagiellonian Univ Krakow, Chair Optimizat & Control, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[4] Univ Austral, Dept Matemat, CONICET, FCE, Paraguay 1950,S2000FZF, Rosario, Argentina
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2021年 / 84卷 / SUPPL 2期
基金
欧盟地平线“2020”;
关键词
Elliptic hemivariational inequality; Asymptotic behavior; Clarke generalized gradient; Mixed problem; Convergence; Nonlinear elliptic equation; HEAT-FLUX; BOUNDARY; EQUATIONS;
D O I
10.1007/s00245-021-09800-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a class of elliptic boundary hemivariational inequalities which originates in the steady-state heat conduction problem with nonmonotone multivalued subdifferential boundary condition on a portion of the boundary described by the Clarke generalized gradient of a locally Lipschitz function. First, we prove a new existence result for the inequality employing the theory of pseudomonotone operators. Next, we give a result on comparison of solutions, and provide sufficient conditions that guarantee the asymptotic behavior of solution, when the heat transfer coefficient tends to infinity. Further, we show a result on the continuous dependence of solution on the internal energy and heat flux. Finally, some examples of convex and nonconvex potentials illustrate our hypotheses.
引用
收藏
页码:1453 / 1475
页数:23
相关论文
共 50 条