Fractional quantum Hall effect in optical lattices

被引:218
|
作者
Hafezi, M. [1 ]
Sorensen, A. S.
Demler, E.
Lukin, M. D.
机构
[1] Harvard Univ, Sch Med, Dept Phys, Cambridge, MA 02138 USA
[2] Univ Copenhagen, Niels Bohr Inst, Danish Natl Res Fdn Ctr Quantum Opt, QUANTOP, DK-2100 Copenhagen, Denmark
来源
PHYSICAL REVIEW A | 2007年 / 76卷 / 02期
关键词
D O I
10.1103/PhysRevA.76.023613
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze a recently proposed method to create fractional quantum Hall (FQH) states of atoms confined in optical lattices [A. Sorensen , Phys. Rev. Lett. 94, 086803 (2005)]. Extending the previous work, we investigate conditions under which the FQH effect can be achieved for bosons on a lattice with an effective magnetic field and finite on-site interaction. Furthermore, we characterize the ground state in such systems by calculating Chern numbers which can provide direct signatures of topological order and explore regimes where the characterization in terms of wave-function overlap fails. We also discuss various issues which are relevant for the practical realization of such FQH states with ultracold atoms in an optical lattice, including the presence of a long-range dipole interaction which can improve the energy gap and stabilize the ground state. We also investigate a detection technique based on Bragg spectroscopy to probe these systems in an experimental realization.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] FRACTIONAL FLUX QUANTUM AND FRACTIONAL QUANTUM HALL-EFFECT
    YANG, ZQ
    KONG, FM
    PHYSICS LETTERS A, 1987, 124 (08) : 450 - 452
  • [22] Fractional quantum Hall effect and quantum symmetry
    Grensing, G
    PHYSICAL REVIEW B, 2000, 61 (08): : 5483 - 5498
  • [23] The connection between integer quantum hall effect and fractional quantum hall effect
    Koo, Je Huan
    Cho, Guangsup
    MODERN PHYSICS LETTERS B, 2007, 21 (2-3): : 109 - 113
  • [24] The quantum anomalous Hall effect in kagome lattices
    Zhang, Zhi-Yong
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (36)
  • [25] Fractional quantum Hall effect at ν = 2
    Balram, Ajit C.
    Wojs, A.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [26] FRACTIONAL QUANTUM HALL-EFFECT
    TSUI, DC
    PHYSICS TODAY, 1984, 37 (01) : S14 - S15
  • [27] THE FRACTIONAL QUANTUM HALL-EFFECT
    TSUI, DC
    STORMER, HL
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1986, 22 (09) : 1711 - 1719
  • [28] Introduction to the fractional quantum Hall effect
    Girvin, SM
    Quantum Hall Effect: Poincare Seminar 2004, 2005, 45 : 133 - 162
  • [29] The Fractional Quantum Hall Effect - Foreword
    Glattli, DC
    COMPTES RENDUS PHYSIQUE, 2002, 3 (06) : 665 - 666
  • [30] Fractional quantum Hall effect in CdTe
    Piot, B. A.
    Kunc, J.
    Potemski, M.
    Maude, D. K.
    Betthausen, C.
    Vogl, A.
    Weiss, D.
    Karczewski, G.
    Wojtowicz, T.
    PHYSICAL REVIEW B, 2010, 82 (08):