Free yang-mills theory versus toric Sasaki-Einstein manifolds

被引:6
|
作者
Nishioka, Tatsuma [1 ]
Takayanagi, Tadashi [1 ]
机构
[1] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan
来源
PHYSICAL REVIEW D | 2007年 / 76卷 / 04期
关键词
D O I
10.1103/PhysRevD.76.044004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It has been known that the Bekenstein-Hawking entropy of the black hole in AdS(5)xS(5) agrees with the free N=4 super Yang-Mills entropy up to the famous factor 4/3. This factor can be interpreted as the ratio of the entropy of the free Yang-Mills theory to the entropy of the strongly coupled Yang-Mills theory. In this paper we compute an analogous factor for infinitely many N=1 superconformal field theories (SCFTs) which are dual to toric Sasaki-Einstein manifolds. We observed that this ratio always takes values within a narrow range around 4/3. We also present explicit values of volumes and central charges for new classes of toric Sasaki-Einstein manifolds.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Hidden symmetries on toric Sasaki-Einstein spaces
    Slesar, V.
    Visinescu, M.
    Vilcu, G. E.
    EPL, 2015, 110 (03)
  • [12] Laplace operators on Sasaki-Einstein manifolds
    Johannes Schmude
    Journal of High Energy Physics, 2014
  • [13] On Sasaki-Einstein manifolds in dimension five
    Charles P. Boyer
    Michael Nakamaye
    Geometriae Dedicata, 2010, 144 : 141 - 156
  • [14] On the topology of some Sasaki-Einstein manifolds
    Boyer, Charles P.
    Tonnesen-Friedman, Christina W.
    NEW YORK JOURNAL OF MATHEMATICS, 2015, 21 : 57 - 72
  • [15] NEW EXAMPLES OF SASAKI-EINSTEIN MANIFOLDS
    Mabuchi, Toshiki
    Nakagawa, Yasuhiro
    TOHOKU MATHEMATICAL JOURNAL, 2013, 65 (02) : 243 - 252
  • [16] On Sasaki-Einstein manifolds in dimension five
    Boyer, Charles P.
    Nakamaye, Michael
    GEOMETRIAE DEDICATA, 2010, 144 (01) : 141 - 156
  • [17] Sasaki-Einstein manifolds and their spinorial geometry
    Kim, NW
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2006, 48 (02) : 197 - 201
  • [18] Laplace operators on Sasaki-Einstein manifolds
    Schmude, Johannes
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (04):
  • [19] Sasaki-einstein manifolds and volume minimisation
    Martelli, Dario
    Sparks, James
    Yau, Shing-Tung
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 280 (03) : 611 - 673
  • [20] Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals
    Martelli, D
    Sparks, J
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (01) : 51 - 89