Nonparametric estimation of correlation functions in longitudinal and spatial data, with application to colon carcinogenesis experiments

被引:23
|
作者
Li, Yehua [1 ]
Wang, Naisyin
Hong, Meeyoung
Turner, Nancy D.
Lupton, Joanne R.
Carroll, Raymond J.
机构
[1] Univ Georgia, Dept Stat, Athens, GA 30602 USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[3] Texas A&M Univ, Fac Nutr, College Stn, TX 77843 USA
来源
ANNALS OF STATISTICS | 2007年 / 35卷 / 04期
关键词
asymptotic theory; bootstrap; colon carcinogenesis; correlation functions; dependent data; functional data; gene expression; kernel regression; nonparametric regression; spatial data; time series;
D O I
10.1214/009053607000000082
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In longitudinal and spatial studies, observations often demonstrate strong correlations that are stationary in time or distance lags, and the times or locations of these data being sampled may not be homogeneous. We propose a nonparametric estimator of the correlation function in such data, using kernel methods. We develop a pointwise asymptotic normal distribution for the proposed estimator, when the number of subjects is fixed and the number of vectors or functions within each subject goes to infinity. Based on the asymptotic theory, we propose a weighted block bootstrapping method for making inferences about the correlation function, where the weights account for the inhomogeneity of the distribution of the times or locations. The method is applied to a data set from a colon carcinogenesis study, in which colonic crypts were sampled from a piece of colon segment from each of the 12 rats in the experiment and the expression level of p27, an important cell cycle protein, was then measured for each cell within the sampled crypts. A simulation study is also provided to illustrate the numerical performance of the proposed method.
引用
收藏
页码:1608 / 1643
页数:36
相关论文
共 50 条
  • [31] Parameter Estimation with Data-Driven Nonparametric Likelihood Functions
    Jiang, Shixiao W.
    Harlim, John
    ENTROPY, 2019, 21 (06)
  • [32] Bayesian Estimation of Correlation Matrices of Longitudinal Data
    Ghosh, Riddhi Pratim
    Mallick, Bani
    Pourahmadi, Mohsen
    BAYESIAN ANALYSIS, 2021, 16 (03): : 1039 - 1058
  • [33] Robust estimation of the correlation matrix of longitudinal data
    Maadooliat, Mehdi
    Pourahmadi, Mohsen
    Huang, Jianhua Z.
    STATISTICS AND COMPUTING, 2013, 23 (01) : 17 - 28
  • [34] Robust estimation of the correlation matrix of longitudinal data
    Mehdi Maadooliat
    Mohsen Pourahmadi
    Jianhua Z. Huang
    Statistics and Computing, 2013, 23 : 17 - 28
  • [35] Nonparametric estimation for time-varying transformation models with longitudinal data
    Wu, Colin O.
    Tian, Xin
    Yu, Jarvis
    JOURNAL OF NONPARAMETRIC STATISTICS, 2010, 22 (02) : 133 - 147
  • [36] Statistical Estimation of Strain Using Spatial Correlation Functions
    Patxi Fernandez-Zelaia
    Yousub Lee
    Quinn Campbell
    Sebastien Dryepondt
    Michael Kirka
    Andrés Márquez Rossy
    Integrating Materials and Manufacturing Innovation, 2022, 11 : 276 - 295
  • [37] Statistical Estimation of Strain Using Spatial Correlation Functions
    Fernandez-Zelaia, Patxi
    Lee, Yousub
    Campbell, Quinn
    Dryepondt, Sebastien
    Kirka, Michael
    Rossy, Andres Marquez
    INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2022, 11 (02) : 276 - 295
  • [38] nparLD: An R Software Package for the Nonparametric Analysis of Longitudinal Data in Factorial Experiments
    Noguchi, Kimihiro
    Gel, Yulia R.
    Brunner, Edgar
    Konietschke, Frank
    JOURNAL OF STATISTICAL SOFTWARE, 2012, 50 (12): : 1 - 23
  • [39] ESTIMATION OF CORRELATION-FUNCTIONS BY COMPRESSED DATA
    DENISYUK, VP
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1979, 22 (07): : 89 - 91
  • [40] Bayesian nonparametric estimation of pair correlation function for inhomogeneous spatial point processes
    Yue, Yu Ryan
    Loh, Ji Meng
    JOURNAL OF NONPARAMETRIC STATISTICS, 2013, 25 (02) : 463 - 474