Risk-sensitive optimization for robust quantum controls

被引:6
|
作者
Ge, Xiaozhen [1 ]
Wu, Re-Bing [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
基金
国家重点研发计划;
关键词
DESIGN;
D O I
10.1103/PhysRevA.104.012422
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Highly accurate and robust control of quantum operations is vital for the realization of error-correctible quantum computation. In this paper, we show that the robustness of high-precision controls can be remarkably enhanced through sampling-based stochastic optimization of a risk-sensitive (RS) loss function. Following the stochastic gradient-descent direction of this loss function, the optimization is guided to penalize poor-performance uncertainty samples in a tunable manner. We propose two algorithms, which are termed as the RS GRAPE and the adaptive RS GRAPE. Their effectiveness is demonstrated by numerical simulations, which is shown to be able to achieve high-control robustness while maintaining high fidelity.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Robust Bounds on Risk-Sensitive Functionals via Renyi Divergence
    Atar, Rami
    Chowdhary, Kenny
    Dupuis, Paul
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2015, 3 (01): : 18 - 33
  • [22] Linear Quadratic Risk-Sensitive and Robust Mean Field Games
    Moon, Jun
    Basar, Tamer
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (03) : 1062 - 1077
  • [23] Risk-sensitive and robust control of discrete time hybrid systems
    Runolfsson, T
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 1055 - 1060
  • [24] Risk-sensitive and robust escape control for degenerate diffusion processes
    Boué, M
    Dupuis, P
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2001, 14 (01) : 62 - 85
  • [25] Risk-Sensitive Loss in Kernel Space for Robust Adaptive Filtering
    Chen, Badong
    Wang, Ren
    2015 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2015, : 921 - 925
  • [26] Risk-Sensitive and Robust Escape Control for Degenerate Diffusion Processes
    Michelle Boué
    Paul Dupuis
    Mathematics of Control, Signals and Systems, 2001, 14 : 62 - 85
  • [27] Robust output feedback stabilization via risk-sensitive control
    Ugrinovskii, VA
    Petersen, IR
    AUTOMATICA, 2002, 38 (06) : 945 - 955
  • [28] Maximum Principles for a Class of Partial Information Risk-Sensitive Optimal Controls
    Huang, Jianhui
    Li, Xun
    Wang, Guangchen
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (06) : 1438 - 1443
  • [29] Nonparametric Compositional Stochastic Optimization for Risk-Sensitive Kernel Learning
    Bedi, Amrit Singh
    Koppel, Alec
    Rajawat, Ketan
    Sanyal, Panchajanya
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 428 - 442
  • [30] Risk-Sensitive Portfolio Optimization Problems with Fixed Income Securities
    Goel, M.
    Kumar, K. S.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 142 (01) : 67 - 84