Local Linear Convergence of the ADMM/Douglas-Rachford Algorithms without Strong Convexity and Application to Statistical Imaging
被引:32
|
作者:
Aspelmeier, Timo
论文数: 0引用数: 0
h-index: 0
机构:
Georg August Univ Gottingen, Inst Math Stochast, D-37077 Gottingen, Germany
Georg August Univ Gottingen, Felix Bernstein Inst Math Stat Biosci, D-37077 Gottingen, GermanyGeorg August Univ Gottingen, Inst Math Stochast, D-37077 Gottingen, Germany
Aspelmeier, Timo
[1
,2
]
Charitha, C.
论文数: 0引用数: 0
h-index: 0
机构:
Georg August Univ Gottingen, Inst Numer & Angew Math, D-37083 Gottingen, GermanyGeorg August Univ Gottingen, Inst Math Stochast, D-37077 Gottingen, Germany
Charitha, C.
[3
]
Luke, D. Russell
论文数: 0引用数: 0
h-index: 0
机构:
Georg August Univ Gottingen, Inst Numer & Angew Math, D-37083 Gottingen, GermanyGeorg August Univ Gottingen, Inst Math Stochast, D-37077 Gottingen, Germany
Luke, D. Russell
[3
]
机构:
[1] Georg August Univ Gottingen, Inst Math Stochast, D-37077 Gottingen, Germany
[2] Georg August Univ Gottingen, Felix Bernstein Inst Math Stat Biosci, D-37077 Gottingen, Germany
[3] Georg August Univ Gottingen, Inst Numer & Angew Math, D-37083 Gottingen, Germany
augmented Lagrangian;
ADMM;
Douglas-Rachford;
exact penalization;
fixed point theory;
image processing;
inverse problems;
metric regularity;
statistical multiscale analysis;
piecewise linear-quadratic;
linear convergence;
ALTERNATING DIRECTION METHOD;
DOUGLAS-RACHFORD;
PENALTY;
APPROXIMATION;
MULTIPLIERS;
PROJECTIONS;
D O I:
10.1137/15M103580X
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
We consider the problem of minimizing the sum of a convex function and a convex function composed with an injective linear mapping. For such problems, subject to a coercivity condition at fixed points of the corresponding Picard iteration, iterates of the alternating directions method of multipliers converge locally linearly to points from which the solution to the original problem can be computed. Our proof strategy uses duality and strong metric subregularity of the Douglas-Rachford fixed point mapping. Our analysis does not require strong convexity and yields error bounds to the set of model solutions. We show in particular that convex piecewise linear-quadratic functions naturally satisfy the requirements of the theory, guaranteeing eventual linear convergence of both the Douglas-Rachford algorithm and the alternating directions method of multipliers for this class of objectives under mild assumptions on the set of fixed points. We demonstrate this result on quantitative image deconvolution and denoising with multiresolution statistical constraints.