Practical Aspects of Machine Learning for the Design-Synthesis-Purify-Assay Workflow

被引:1
|
作者
Sirockin, Finton [1 ]
Stiefl, Nikolaus [1 ]
机构
[1] Novartis Inst Biomed Res, Fabr Str 2,Novartis Campus, CH-4056 Basel, Switzerland
关键词
Automated synthesis; Auto-updating learning systems; Machine learning; BIOLOGICAL-ACTIVITY; DRUG DISCOVERY; QSAR; VALIDATION; DATABASE; MODEL; SHAPE;
D O I
10.2533/chimia.2018.648
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
引用
收藏
页码:648 / 649
页数:2
相关论文
共 50 条
  • [31] Practical Machine Learning-Assisted Design Protocol for Protein Engineering: Transaminase Engineering for the Conversion of Bulky Substrates
    Menke, Marian J.
    Ao, Yu-Fei
    Bornscheuer, Uwe T.
    ACS CATALYSIS, 2024, 14 (09) : 6462 - 6469
  • [32] Navigating the design space of inorganic materials synthesis using statistical methods and machine learning
    Braham, Erick J.
    Davidson, Rachel D.
    Al-Hashimi, Mohammed
    Arroyave, Raymundo
    Banerjee, Sarbajit
    DALTON TRANSACTIONS, 2020, 49 (33) : 11480 - 11488
  • [33] Machine learning and text mining approaches to design selective catalyst reduction synthesis routes
    Li, Shuyuan
    Huang, Chenyu
    Zhang, Yunjiang
    Li, Jing
    Sun, Shaorui
    CATALYSIS SCIENCE & TECHNOLOGY, 2025, 15 (04) : 1217 - 1227
  • [34] Machine learning predictive modelling high-level synthesis design space exploration
    Schafer, B. Carrion
    Wakabayashi, K.
    IET COMPUTERS AND DIGITAL TECHNIQUES, 2012, 6 (03): : 153 - 159
  • [35] Machine learning based fast and accurate High Level Synthesis design space exploration: From graph to synthesis
    Goswami, Pingakshya
    Schaefer, Benjamin Carrion
    Bhatia, Dinesh
    INTEGRATION-THE VLSI JOURNAL, 2023, 88 : 116 - 124
  • [36] Enhancing Survey Efficiency and Predictive Ability in Energy System Design through Machine Learning: A Workflow-Based Approach for Improved Outcomes
    Chapman, Andrew
    ENERGIES, 2023, 16 (13)
  • [37] Evaluation of an Affinity-Enhanced Anti-SARS-CoV2 Nanobody Design Workflow Using Machine Learning and Molecular Dynamics
    Fazekas, Zsolt
    Nagy-Fazekas, Dora
    Shilling-Toth, Boglarka Maria
    Ecsedi, Peter
    Straner, Pal
    Nyitray, Laszlo
    Perczel, Andras
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, : 7626 - 7638
  • [38] Machine learning accelerates the investigation of targeted MOFs: Performance prediction, rational design and intelligent synthesis
    Lin, Jing
    Liu, Zhimeng
    Guo, Yujie
    Wang, Shulin
    Tao, Zhang
    Xue, Xiangdong
    Li, Rushuo
    Feng, Shihao
    Wang, Linmeng
    Liu, Jiangtao
    Gao, Hongyi
    Wang, Ge
    Su, Yanjing
    NANO TODAY, 2023, 49
  • [39] Machine Learning-Aided Crystal Facet Rational Design with Ionic Liquid Controllable Synthesis
    Lai, Fuming
    Sun, Zhehao
    Saji, Sandra Elizabeth
    He, Yichuan
    Yu, Xuefeng
    Zhao, Haitao
    Guo, Haibo
    Yin, Zongyou
    SMALL, 2021, 17 (12)
  • [40] Fast and Inexpensive High-Level Synthesis Design Space Exploration: Machine Learning to the Rescue
    Rashid, Md Imtiaz
    Schafer, Benjamin Carrion
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023, 42 (11) : 3939 - 3950