The characterization of trees with the smaller Wiener polarity indices

被引:0
|
作者
Tang, Siping [2 ]
Deng, Hanyuan [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
[2] Hunan Univ Sci & Technol, Sch Math & Comp Sci, Xiangtan 411201, Hunan, Peoples R China
关键词
topological index; the Wiener polarity index; distance; chemical tree;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Wiener polarity index W-p(G) of a graph G = (V, E) is the number of unordered pairs of vertices {u, v} of G such that the distance d(G)(u, v) between u and v is 3. In this paper, we characterize the trees with the second and third smallest Wiener polarity indices among all trees of order n and diameter k.
引用
收藏
页码:183 / 190
页数:8
相关论文
共 50 条
  • [21] A note on chemical trees with minimum Wiener polarity index
    Ali, Akbar
    Du, Zhibin
    Ali, Muhammad
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 335 : 231 - 236
  • [22] On the extremal Wiener polarity index of trees with a given diameter
    Deng, Hanyuan
    Xiao, Hui
    Tang, Fenfang
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 63 (01) : 257 - 264
  • [23] On the generalized Wiener polarity index of trees with a given diameter
    Yue, Jun
    Lei, Hui
    Shi, Yongtang
    DISCRETE APPLIED MATHEMATICS, 2018, 243 : 279 - 285
  • [24] The maximum Wiener polarity index of trees with k pendants
    Deng, Hanyuan
    Xiao, Hui
    APPLIED MATHEMATICS LETTERS, 2010, 23 (06) : 710 - 715
  • [25] The nine smallest hyper-Wiener indices of trees and the eight smallest hyper-Wiener (Wiener) indices of unicyclic graphs
    Liu, Muhuo
    Liu, Bolian
    UTILITAS MATHEMATICA, 2014, 95 : 129 - 139
  • [26] On the variable Wiener indices of trees with given maximum degree
    Liu, Muhuo
    Liu, Bolian
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (9-10) : 1651 - 1659
  • [27] Ordering trees with given matching number by their Wiener indices
    Tan S.-W.
    Wei N.-N.
    Wang Q.-L.
    Wang D.-F.
    Journal of Applied Mathematics and Computing, 2015, 49 (1-2) : 309 - 327
  • [28] Wiener Odd and Even Indices on BC-Trees
    Yang, Yu
    Zhou, Liang
    Liu, Hongbo
    Abraham, Ajith
    2013 THIRD WORLD CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGIES (WICT), 2013, : 208 - 213
  • [29] Partitioning of Wiener-type indices, especially for trees
    Klein, DJ
    INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 2003, 42 (06): : 1264 - 1269
  • [30] Ordering trees having small reverse Wiener indices
    Xing, Rundan
    Zhou, Bo
    FILOMAT, 2012, 26 (04) : 637 - 648