A Full Characterization of Bertrand Numeration Systems

被引:0
|
作者
Charlier, Emilie [1 ]
Cisternino, Celia [1 ]
Stipulanti, Manon [1 ]
机构
[1] Univ Liege, Dept Math, Liege, Belgium
来源
关键词
Numeration systems; Bertrand condition; Real bases expansion; Dominant root; Parry numbers; Subshifts; PARRY; BASE;
D O I
10.1007/978-3-031-05578-2_8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Among all positional numeration systems, the widely studied Bertrand numeration systems are defined by a simple criterion in terms of their numeration languages. In 1989, Bertrand-Mathis characterized them via representations in a real base beta. However, the given condition turns out to be not necessary. Hence, the goal of this paper is to provide a correction of Bertrand-Mathis' result. The main difference arises when beta is a Parry number, in which case two associated Bertrand numeration systems are derived. Along the way, we define a non-canonical beta-shift and study its properties analogously to those of the usual canonical one.
引用
收藏
页码:102 / 114
页数:13
相关论文
共 50 条
  • [21] THE USE AND USEFULNESS OF NUMERATION SYSTEMS
    FRAENKEL, AS
    INFORMATION AND COMPUTATION, 1989, 81 (01) : 46 - 61
  • [22] On decidable extensions of Presburger arithmetic: From A. Bertrand Numeration Sytems to Pisot numbers
    Point, F
    JOURNAL OF SYMBOLIC LOGIC, 2000, 65 (03) : 1347 - 1374
  • [23] Main types of values of full-numeration words
    Malevinsky, Sergey O.
    Aziz, Ahmadzai Sultan
    Karabulatova, IrMa S.
    Luchinskiy, Yury, V
    Fanyan, Nelly Yu
    Grushevskaya, Elena S.
    Zelenskaya, Valentina V.
    AMAZONIA INVESTIGA, 2019, 8 (21): : 513 - 521
  • [24] Automatic maps in exotic numeration systems
    Allouche, JP
    Cateland, E
    Gilbert, WJ
    Peitgen, HO
    Shallit, JO
    Skordev, G
    THEORY OF COMPUTING SYSTEMS, 1997, 30 (03) : 285 - 331
  • [25] On Dynamics Related to a Class of Numeration Systems
    Maria Doudékova-Puydebois
    Monatshefte für Mathematik, 2002, 135 (1) : 11 - 24
  • [26] Self Generating Sets and Numeration Systems
    Garth, David
    Palmer, Joseph
    Ta, Ha
    COMBINATORIAL NUMBER THEORY, 2009, : 41 - 56
  • [27] LINEAR NUMERATION SYSTEMS OF ORDER 2
    FROUGNY, C
    INFORMATION AND COMPUTATION, 1988, 77 (03) : 233 - 259
  • [28] (q, δ)-numeration systems with missing digits
    Bassino, F
    Prodinger, H
    MONATSHEFTE FUR MATHEMATIK, 2004, 141 (02): : 89 - 99
  • [29] Independent numeration systems and syndetical properties
    Hansel, G
    THEORETICAL COMPUTER SCIENCE, 1998, 204 (1-2) : 119 - 130
  • [30] Digital blocks in linear numeration systems
    Barat, G
    Tichy, RF
    Tijdeman, R
    NUMBER THEORY IN PROGRESS, VOLS 1 AND 2: VOL 1: DIOPHANTINE PROBLEMS AND POLYNOMIALS; VOL 2: ELEMENTARY AND ANALYTIC NUMBER THEORY;, 1999, : 607 - 631