Sufficient conditions for topological order in insulators

被引:69
|
作者
Hastings, MB [1 ]
机构
[1] Los Alamos Natl Lab, Ctr Nonlinear Studies & Theoret Div, Los Alamos, NM 87545 USA
来源
EUROPHYSICS LETTERS | 2005年 / 70卷 / 06期
关键词
D O I
10.1209/epl/i2005-10046-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the existence of low-energy excitations in insulating systems at general filling factor under certain conditions, and discuss in which cases these may be identified as topological excitations. In the specific case of half-filling this proof provides a significantly shortened proof of the recent higher-dimensional Lieb-Schultz-Mattis theorem.
引用
收藏
页码:824 / 830
页数:7
相关论文
共 50 条
  • [21] Topological invariants for anomalous Floquet higher-order topological insulators
    Biao Huang
    Frontiers of Physics, 2023, 18
  • [22] Higher-order topological superconductors based on weak topological insulators
    Luo, Xun-Jiang
    Pan, Xiao-Hong
    Liu, Xin
    PHYSICAL REVIEW B, 2021, 104 (10)
  • [23] Topological invariants for anomalous Floquet higher-order topological insulators
    Biao Huang
    Frontiers of Physics, 2023, 18 (01) : 48 - 63
  • [24] Topological nano-switches in higher-order topological insulators
    Poata, Joseph
    Taddei, Fabio
    Governale, Michele
    NEW JOURNAL OF PHYSICS, 2024, 26 (05):
  • [25] Topological invariants for anomalous Floquet higher-order topological insulators
    Huang, Biao
    FRONTIERS OF PHYSICS, 2023, 18 (01)
  • [26] Sufficient conditions for starlikeness of order α
    Aldihan, Nailah M.
    Bulboaca, Teodor
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2008, 72 (1-2): : 81 - 94
  • [27] Higher-order topological insulators in amorphous solids
    Agarwala, Adhip
    Juricic, Vladimir
    Roy, Bitan
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [28] Nonlinear second-order photonic topological insulators
    Marco S. Kirsch
    Yiqi Zhang
    Mark Kremer
    Lukas J. Maczewsky
    Sergey K. Ivanov
    Yaroslav V. Kartashov
    Lluis Torner
    Dieter Bauer
    Alexander Szameit
    Matthias Heinrich
    Nature Physics, 2021, 17 : 995 - 1000
  • [29] Hybrid-order topology of weak topological insulators
    Kooi, Sander H.
    van Miert, Guido
    Ortix, Carmine
    PHYSICAL REVIEW B, 2020, 102 (04)
  • [30] Higher-order topological insulators in synthetic dimensions
    Dutt, Avik
    Minkov, Momchil
    Williamson, Ian A. D.
    Fan, Shanhui
    LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)