POSITIVE SOLUTIONS FOR A FOURTH ORDER DIFFERENTIAL INCLUSION BASED ON THE EULER-BERNOULLI EQUATION FOR A CANTILEVER BEAM

被引:0
|
作者
Spraker, John S. [1 ]
机构
[1] Western Kentucky Univ, Dept Math, 1906 Coll Hts Blvd, Bowling Green, KY 42102 USA
来源
DIFFERENTIAL EQUATIONS & APPLICATIONS | 2019年 / 11卷 / 04期
关键词
Existence of solutions; fourth order differential inclusion; fixed point; boundary value problem; Ascoli theorem; EXISTENCE;
D O I
10.7153/dea-2019-11-26
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An existence result for positive solutions to a fourth order differential inclusion with boundary values is given. This is accomplished by using a fixed point theorem on cones for multivalued maps, L-1 selections and a generalization of the Ascoli theorem. The inclusion allows the function and its first three derivatives to be on the right-hand side. The proof involves a Green's function and a positive eigenvalue of a particular operator. An example is provided.
引用
收藏
页码:531 / 541
页数:11
相关论文
共 50 条
  • [21] Unboundedness for the Euler-Bernoulli beam equation with a fractional boundary dissipation
    Labidi, S
    Tatar, NE
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 161 (03) : 697 - 706
  • [22] GEVREY CLASS OF LOCALLY DISSIPATIVE EULER-BERNOULLI BEAM EQUATION
    Gomez Avalos, G.
    Rivera, J. Munoz
    Liu, Z.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (03) : 2174 - 2194
  • [23] Noether Symmetry Analysis of the Dynamic Euler-Bernoulli Beam Equation
    Johnpillai, A. G.
    Mahomed, K. S.
    Harley, C.
    Mahomed, F. M.
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (05): : 447 - 456
  • [24] Boundary PID output regulation for Euler-Bernoulli beam equation
    Fan, Xueru
    Xu, Cheng-Zhong
    Kou, Chunhai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 529 (01)
  • [25] Robust output feedback Control for an Euler-Bernoulli Beam Equation
    Guo, Bao-Zhu
    Meng, Tingting
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 800 - 805
  • [26] FOURIER METHOD FOR INVERSE COEFFICIENT EULER-BERNOULLI BEAM EQUATION
    Baglan, Irem
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 514 - 527
  • [28] Timoshenko curved beam bending solutions in terms of Euler-Bernoulli solutions
    Lim, CW
    Wang, CM
    Kitipornchai, S
    ARCHIVE OF APPLIED MECHANICS, 1997, 67 (03) : 179 - 190
  • [29] A note on the integrability of a remarkable static Euler-Bernoulli beam equation
    Fatima, A.
    Bokhari, Ashfaque H.
    Mahomed, F. M.
    Zaman, F. D.
    JOURNAL OF ENGINEERING MATHEMATICS, 2013, 82 (01) : 101 - 108
  • [30] An inverse spectral problem for the Euler-Bernoulli equation for the vibrating beam
    Papanicolaou, VG
    Kravvaritis, D
    INVERSE PROBLEMS, 1997, 13 (04) : 1083 - 1092