Rogue-wave solutions of a higher-order nonlinear Schrodinger equation for inhomogeneous Heisenberg ferromagnetic system

被引:20
|
作者
Jia, H. X. [1 ]
Ma, J. Y. [1 ]
Liu, Y. J. [2 ]
Liu, X. F. [3 ]
机构
[1] Shijiazhuang Posts & Telecommun Tech Coll, Dept Basic, Shijiazhuang 050021, Peoples R China
[2] Hebei Normal Univ, Coll Career Technol, Shijiazhuang 050016, Peoples R China
[3] Shijiazhuang Tiedao Univ, Div Sci & Technol, Shijiazhuang 050043, Peoples R China
关键词
Heisenberg ferromagnetism system; Generalized Darboux transformation; Rogue-wave solutions; PROLONGATION STRUCTURES; EVOLUTION-EQUATIONS; SOLITONS;
D O I
10.1007/s12648-014-0544-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a higher-order nonlinear Schrodinger equation for the inhomogeneous Heisenberg ferromagnetic spin system is studied. By virtue of the generalized Darboux transformation, higher-order rogue-wave solutions are derived. Rogue-wave propagation and interaction are analyzed. We have observed that perturbation parameter and inhomogeneities in the medium affect the propagation speed and direction of first-order rogue waves and interaction of second-order rogue waves.
引用
收藏
页码:281 / 287
页数:7
相关论文
共 50 条
  • [41] Conservation laws, nonautonomous breathers and rogue waves for a higher-order nonlinear Schrodinger equation in the inhomogeneous optical fiber
    Su, Chuan-Qi
    Qin, Nan
    Li, Jian-Guang
    SUPERLATTICES AND MICROSTRUCTURES, 2016, 100 : 381 - 391
  • [42] ROGUE-WAVE SOLUTIONS OF THE ZAKHAROV EQUATION
    Rao, Jiguang
    Wang, Lihong
    Liu, Wei
    He, Jingsong
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 193 (03) : 1783 - 1800
  • [43] Rogue-wave solutions of the Zakharov equation
    Jiguang Rao
    Lihong Wang
    Wei Liu
    Jingsong He
    Theoretical and Mathematical Physics, 2017, 193 : 1783 - 1800
  • [44] On the Darboux transformation of a generalized inhomogeneous higher-order nonlinear Schrodinger equation
    Yong, Xuelin
    Wang, Guo
    Li, Wei
    Huang, Yehui
    Gao, Jianwei
    NONLINEAR DYNAMICS, 2017, 87 (01) : 75 - 82
  • [45] Characterization of optical rogue wave based on solitons' eigenvalues of the integrable higher-order nonlinear Schrodinger equation
    Weerasekara, Gihan
    Maruta, Akihiro
    OPTICS COMMUNICATIONS, 2017, 382 : 639 - 645
  • [46] Darboux Transformations, Higher-Order Rational Solitons and Rogue Wave Solutions for a (2+1)-Dimensional Nonlinear Schrodinger Equation
    Chen, Mi
    Li, Biao
    Yu, Ya-Xuan
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (01) : 27 - 36
  • [47] Higher-order localized wave solutions to a coupled fourth-order nonlinear Schrodinger equation
    Song, N.
    Shang, H. J.
    Zhang, Y. F.
    Ma, W. X.
    MODERN PHYSICS LETTERS B, 2022, 36 (26N27):
  • [48] Exact soliton solutions for the higher-order nonlinear Schrodinger equation
    Li, B
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2005, 16 (08): : 1225 - 1237
  • [49] BIFURCATION OF PHASE AND EXACT TRAVELING WAVE SOLUTIONS OF A HIGHER-ORDER NONLINEAR SCHRODINGER EQUATION
    Yan, Fang
    Liu, Haihong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (05):
  • [50] Exact analytical solutions of higher-order nonlinear Schrodinger equation
    Wang, Hongcheng
    Liang, Jianchu
    Chen, Guihua
    Zhou, Ling
    Ling, Dongxiong
    Liu, Minxia
    OPTIK, 2017, 131 : 438 - 445