Levinson's theorem for the Schrodinger equation in two dimensions

被引:20
|
作者
Dong, SH
Hou, XW
Ma, ZQ
机构
[1] Inst High Energy Phys, Beijing 100039, Peoples R China
[2] Univ Three Gorges, Dept Phys, Yichang 443000, Peoples R China
[3] China Ctr Adv Sci & Technol, World Lab, Beijing 100080, Peoples R China
来源
PHYSICAL REVIEW A | 1998年 / 58卷 / 04期
关键词
D O I
10.1103/PhysRevA.58.2790
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Levinson's theorem for the Schrodinger equation with a cylindrically symmetric potential in two dimensions is reestablished by the Sturm-Liouville theorem. The critical case, where the Schrodinger equation has a finite zero-energy solution, is:analyzed in detail. It is shown that, in comparison to Levinson's theorem in the noncritical case, the half bound state for the P wave, in which the wave function for the zero-energy solution does not decay fast enough at infinity to be square integrable, will cause the phase shift of the P wave at zero energy to increase an additional pi. [S1050-2947(98)08908-2].
引用
收藏
页码:2790 / 2796
页数:7
相关论文
共 50 条
  • [31] Levinson theorem for the Dirac equation in one dimension
    Ma, Zhong-Qi
    Dong, Shi-Hai
    Wang, Lu-Ya
    PHYSICAL REVIEW A, 2006, 74 (01):
  • [32] LEVINSON THEOREM FOR THE KLEIN-GORDON EQUATION
    LIANG, YG
    MA, ZQ
    PHYSICAL REVIEW D, 1986, 34 (02): : 565 - 570
  • [33] Levinson's theorem for graphs
    Childs, Andrew M.
    Strouse, D. J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (08)
  • [34] The cubic nonlinear Schrodinger equation in two dimensions with radial data
    Killip, Rowan
    Tao, Terence
    Visan, Monica
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2009, 11 (06) : 1203 - 1258
  • [35] INVERSE BOUNDARY VALUE PROBLEM FOR SCHRODINGER EQUATION IN TWO DIMENSIONS
    Imanuvilov, O. Yu.
    Yamamoto, M.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (03) : 1333 - 1339
  • [36] Exact solutions of the Schrodinger equation for an anharmonic potential in two dimensions
    Singh, Ram Mehar
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (11) : 6439 - 6445
  • [37] Energy Scattering for Schrodinger Equation with Exponential Nonlinearity in Two Dimensions
    Wang, Shuxia
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [38] The solution of the Schrodinger equation for complex Hamiltonian systems in two dimensions
    Chand, Fakir
    Singh, Ram Mehar
    Kumar, Narender
    Mishra, S. C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (33) : 10171 - 10182
  • [39] Solving the Vlasov equation in two spatial dimensions with the Schrodinger method
    Kopp, Michael
    Vattis, Kyriakos
    Skordis, Constantinos
    PHYSICAL REVIEW D, 2017, 96 (12)
  • [40] Levinson's Theorem: An Index Theorem in Scattering Theory
    Richard, S.
    SPECTRAL THEORY AND MATHEMATICAL PHYSICS, 2016, 254 : 149 - 203