Nonautonomous rogue wave solutions and numerical simulations for a three-dimensional nonlinear Schrodinger equation

被引:3
|
作者
Yu, Fajun [1 ]
机构
[1] Shenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonautonomous; Rogue wave; Rational solution; Nonlinear Schrodinger equation; Similarity transformation; VARIABLE-COEFFICIENTS; LIGHT; SOLITONS; OPTICS; MODEL;
D O I
10.1007/s11071-016-2806-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We consider nonautonomous rogue wave solutions of a -dimensional (3D) nonlinear Schrodinger equation (NLSE) with time-space modulation terms, the dispersion and the nonlinear coefficients engendering temporal dependency. Similarity transformation is used to convert the nonautonomous equation into autonomous NLSE; we obtain the multi-rogue wave solutions employing the generalized Darboux transformation. Particularly, the rogue wave solutions possess several free parameters. Then, the first-order and second-order nonautonomous rogue wave solutions are considered for the 3D NLSE with variable coefficients. At last, the numerical simulations on the evolution and collision of rogue wave solutions are performed to verify the prediction of the analytical formulations. The obtained nonautonomous rogue wave solutions can be used to describe the dynamics waves in the nonlinear optical fibers and Bose-Einstein condensates, respectively.
引用
收藏
页码:1929 / 1938
页数:10
相关论文
共 50 条
  • [31] Rogue Wave with a Controllable Center of Nonlinear Schrodinger Equation
    Wang Xiao-Chun
    He Jing-Song
    Li Yi-Shen
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (04) : 631 - 637
  • [32] Approximate rogue wave solutions of the forced and damped nonlinear Schrodinger equation for water waves
    Onorato, Miguel
    Proment, Davide
    PHYSICS LETTERS A, 2012, 376 (45) : 3057 - 3059
  • [33] Rogue wave solutions for a higher-order nonlinear Schrodinger equation in an optical fiber
    Lan, Zhong-Zhou
    APPLIED MATHEMATICS LETTERS, 2020, 107
  • [34] Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrodinger Equation
    Zhang, Hai-Qiang
    Liu, Xiao-Li
    Wen, Li-Li
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (02): : 95 - 101
  • [35] Analytical solutions and rogue waves in (3+1)-dimensional nonlinear Schrodinger equation
    Ma Zheng-Yi
    Ma Song-Hua
    CHINESE PHYSICS B, 2012, 21 (03)
  • [36] Nonautonomous complex wave solutions to the (2+1)-dimensional variable-coefficients nonlinear Chiral Schrodinger equation
    Sulaiman, Tukur Abdulkadir
    Yusuf, Abdullahi
    Abdel-Khalek, S.
    Bayram, Mustafa
    Ahmad, Hijaz
    RESULTS IN PHYSICS, 2020, 19
  • [37] Three-Dimensional Bright-Dark Soliton, Bright Soliton Pairs, and Rogue Wave of Coupled Nonlinear Schrodinger Equation with Time Space Modulation
    Chen, Junchao
    Li, Biao
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (8-9): : 483 - 490
  • [38] Soliton and rogue wave solutions of two-component nonlinear Schrodinger equation coupled to the Boussinesq equation
    Song, Cai-Qin
    Xiao, Dong-Mei
    Zhu, Zuo-Nong
    CHINESE PHYSICS B, 2017, 26 (10)
  • [39] Darboux transformation of a new generalized nonlinear Schrodinger equation: soliton solutions, breather solutions, and rogue wave solutions
    Tang, Yaning
    He, Chunhua
    Zhou, Meiling
    NONLINEAR DYNAMICS, 2018, 92 (04) : 2023 - 2036
  • [40] A variety of nonautonomous complex wave solutions for the (2+1)-dimensional nonlinear Schrodinger equation with variable coefficients in nonlinear optical fibers
    Liu, Jian-Guo
    Osman, M. S.
    Wazwaz, Abdul-Majid
    OPTIK, 2019, 180 : 917 - 923