Loss of synchronization in coupled oscillators with ubiquitous local stability

被引:13
|
作者
Corron, NJ [1 ]
机构
[1] USA, Aviat & Missile Command, AMSAM RD WS ST, Redstone Arsenal, AL 35898 USA
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 05期
关键词
D O I
10.1103/PhysRevE.63.055203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The issue of using instantaneous eigenvalues as indicators of synchronization quality in coupled chaotic systems is examined. Previously, it has been assumed that, if the eigenvalues of the linearized synchronization dynamics have negative real parts everywhere on the attractor, the synchronized state is stable. In this Rapid Communication, two counterexamples are presented that show this assumption is invalid.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Synchronization in coupled phase oscillators
    Sakaguchi, Hidetsugu
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2008, 53 (02) : 1257 - 1264
  • [22] Synchronization in lattices of coupled oscillators
    Afraimovich, VS
    Chow, SN
    Hale, JK
    PHYSICA D, 1997, 103 (1-4): : 442 - 451
  • [23] Forced synchronization of coupled oscillators
    Kitajima, H
    Noumi, Y
    Kousaka, T
    Kawakami, H
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1999, E82A (04) : 700 - 703
  • [24] COUPLED OSCILLATORS AND BIOLOGICAL SYNCHRONIZATION
    STROGATZ, SH
    STEWART, I
    SCIENTIFIC AMERICAN, 1993, 269 (06) : 102 - 109
  • [25] Synchronization of Coupled Oscillators is a Game
    Yin, Huibing
    Mehta, Prashant G.
    Meyn, Sean P.
    Shanbhag, Uday V.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (04) : 920 - 935
  • [26] On the synchronization of spatially coupled oscillators
    Cenedese, Angelo
    Favaretto, Chiara
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 4836 - 4841
  • [27] Stability of synchronization in a shift-invariant ring of mutually coupled oscillators
    Yamapi, R.
    Mackay, R. S.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2008, 10 (04): : 973 - 996
  • [28] Stability analysis of mobile robot formations based on synchronization of coupled oscillators
    Nakamura, Tadashi
    Tsukiji, Miyuki
    Hara, Naoyuki
    Konishi, Keiji
    IFAC PAPERSONLINE, 2016, 49 (22): : 187 - 191
  • [29] The Lyapunov-Krasovskii theorem and a sufficient criterion for local stability of isochronal synchronization in networks of delay-coupled oscillators
    Grzybowski, J. M. V.
    Macau, E. E. N.
    Yoneyama, T.
    PHYSICA D-NONLINEAR PHENOMENA, 2017, 346 : 28 - 36
  • [30] Partial synchronization of coupled chaotic oscillators with blinking non-local couplings
    Ao, Bin
    Ma, Xiaojuan
    Zheng, Zhigang
    Li, Xiullin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (07): : 995 - 1003