Loss of synchronization in coupled oscillators with ubiquitous local stability

被引:13
|
作者
Corron, NJ [1 ]
机构
[1] USA, Aviat & Missile Command, AMSAM RD WS ST, Redstone Arsenal, AL 35898 USA
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 05期
关键词
D O I
10.1103/PhysRevE.63.055203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The issue of using instantaneous eigenvalues as indicators of synchronization quality in coupled chaotic systems is examined. Previously, it has been assumed that, if the eigenvalues of the linearized synchronization dynamics have negative real parts everywhere on the attractor, the synchronized state is stable. In this Rapid Communication, two counterexamples are presented that show this assumption is invalid.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Local synchronization in complex networks of coupled oscillators
    Stout, John
    Whiteway, Matthew
    Ott, Edward
    Girvan, Michelle
    Antonsen, Thomas M.
    CHAOS, 2011, 21 (02)
  • [2] Synchronization of coupled harmonic oscillators with local interaction
    Ren, Wei
    AUTOMATICA, 2008, 44 (12) : 3195 - 3200
  • [3] Enhancing the stability of the synchronization of multivariable coupled oscillators
    Sevilla-Escoboza, R.
    Gutierrez, R.
    Huerta-Cuellar, G.
    Boccaletti, S.
    Gomez-Gardenes, J.
    Arenas, A.
    Buldu, J. M.
    PHYSICAL REVIEW E, 2015, 92 (03):
  • [4] Synchronization of coupled harmonic oscillators with local instantaneous interaction
    Zhou, Jin
    Zhang, Hua
    Xiang, Lan
    Wu, Quanjun
    AUTOMATICA, 2012, 48 (08) : 1715 - 1721
  • [5] Stability and multistability of synchronization in networks of coupled phase oscillators
    Zhai, Yun
    Wang, Xuan
    Xiao, Jinghua
    Zheng, Zhigang
    CHINESE PHYSICS B, 2023, 32 (06)
  • [6] Stability and multistability of synchronization in networks of coupled phase oscillators
    翟云
    王璇
    肖井华
    郑志刚
    Chinese Physics B, 2023, (06) : 89 - 97
  • [7] Coupled Spin Torque Nano-Oscillators: Stability of Synchronization
    Beauvais, K.
    Palacios, A.
    Shaffer, R.
    Turtle, J.
    In, V.
    Longhini, P.
    INTERDISCIPLINARY TOPICS IN APPLIED MATHEMATICS, MODELING AND COMPUTATIONAL SCIENCE, 2015, 117 : 43 - 48
  • [8] Phase-Coupled Oscillators with Plastic Coupling: Synchronization and Stability
    Gushchin, Andrey
    Mallada, Enrique
    Tang, Ao
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2016, 3 (04): : 240 - 256
  • [9] NONLINEAR STABILITY OF INCOHERENCE AND COLLECTIVE SYNCHRONIZATION IN A POPULATION OF COUPLED OSCILLATORS
    BONILLA, LL
    NEU, JC
    SPIGLER, R
    JOURNAL OF STATISTICAL PHYSICS, 1992, 67 (1-2) : 313 - 380
  • [10] Three coupled oscillators as a universal probe of synchronization stability in coupled oscillator arrays
    Fink, Kenneth S.
    Johnson, Gregg
    Carroll, Tom
    Mar, Doug
    Pecora, Lou
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (05): : 5080 - 5090