Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism

被引:175
|
作者
Spector, Arthur A. [1 ]
Kim, Hee-Yong [1 ]
机构
[1] NIAAA, Lab Mol Signaling, NIH, Bethesda, MD 20892 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS | 2015年 / 1851卷 / 04期
关键词
Arachidonic acid (AA); Epoxyeicosatrienoic acid (EET); Eicosapentaenoic acid (EPA); Docosahexaenoic acid (DHA); Epoxyeicosatetraenoic acid (EpETE); Epoxydocosapentaenoic acid (EpDPE); SOLUBLE EPOXIDE HYDROLASE; ACTIVATED PROTEIN-KINASE; SENSITIVE K+ CHANNELS; EPOXYEICOSATRIENOIC ACIDS; ARACHIDONIC-ACID; 14,15-EPOXYEICOSATRIENOIC ACID; DOCOSAHEXAENOIC ACID; EICOSAPENTAENOIC ACID; BOVINE CORONARY; DIHYDROXYEICOSATRIENOIC ACIDS;
D O I
10.1016/j.bbalip.2014.07.020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polyunsaturated fatty acids (PUFA) are oxidized by cytochrome P450 epoxygenases to PUFA epoxides which function as potent lipid mediators. The major metabolic pathways of PUFA epoxides are incorporation into phospholipids and hydrolysis to the corresponding PUFA dials by soluble epoxide hydrolase. Inhibitors of soluble epoxide hydrolase stabilize PUFA epoxides and potentiate their functional effects. The epoxyeicosatrienoic adds (EETs) synthesized from arachidonic acid produce vasodilation, stimulate angiogenesis, have anti-inflammatory actions, and protect the heart against ischemia-reperfusion injury. EETs produce these functional effects by activating receptor-mediated signaling pathways and ion channels. The epoxyeicosatetraenoic acids synthesized from eicosapentaenoic acid and epoxydocosapentaenoic acids synthesized from docosahexaenoic acid are potent inhibitors of cardiac arrhythmias. Epoxydocosapentaenoic acids also inhibit angiogenesis, decrease inflammatory and neuropathic pain, and reduce tumor metastasis. These findings indicate that a number of the beneficial functions of PUFA may be due to their conversion to PUFA epoxides. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance". Published by Elsevier B.V.
引用
收藏
页码:356 / 365
页数:10
相关论文
共 50 条
  • [21] Cytochrome P450 pathways of arachidonic acid metabolism
    Kroetz, DL
    Zeldin, DC
    CURRENT OPINION IN LIPIDOLOGY, 2002, 13 (03) : 273 - 283
  • [22] Prospective for cytochrome P450 epoxygenase cardiovascular and renal therapeutics
    Imig, John D.
    PHARMACOLOGY & THERAPEUTICS, 2018, 192 : 1 - 19
  • [23] CYTOCHROME P450 EPOXYGENASE EICOSANOID PATHWAY AS NOVEL BIOMARKER AND THERAPEUTIC TARGET OF COLORECTAL CANCER
    Zhang, Guodong
    Wang, Weicang
    Yang, Jun
    Edin, Matthew
    Hammock, Bruce
    Zeldin, Darryl
    FASEB JOURNAL, 2018, 32 (01):
  • [24] Effects of cytochrome P450 arachidonic acid epoxygenase on the proliferation and chemotaxis of vascular endothelial cells
    Jiang, JG
    Wang, Y
    Wang, DW
    DRUG METABOLISM REVIEWS, 2003, 35 : 36 - 36
  • [25] Activation of vascular BK channels by docosahexaenoic acid is dependent on cytochrome P450 epoxygenase activity
    Wang, Ru-xing
    Chai, Qiang
    Lu, Tong
    Lee, Hon-Chi
    CARDIOVASCULAR RESEARCH, 2011, 90 (02) : 344 - 352
  • [26] A Novel Role for Cytochrome P450 Epoxygenase Metabolites in Septic Shock
    Jones, Timothy N.
    Janani, Leila
    Gordon, Anthony C.
    Al-Beidh, Farah
    Antcliffe, David B.
    CRITICAL CARE EXPLORATIONS, 2022, 4 (01) : E0622
  • [27] P450 CYTOCHROME AND METABOLISM OF ARACHIDONIC-ACID IN RABBIT
    DEBY, C
    JEUNIAUX, FD
    DEBYDUPONT, G
    VIGNETTE, R
    BULLETIN DE LA CLASSE DES SCIENCES ACADEMIE ROYALE DE BELGIQUE, 1980, 66 (02): : 154 - 161
  • [28] Cytochrome P450 and radiopharmaceutical metabolism
    Giron, M. C.
    Portolan, S.
    Bin, A.
    Mazzi, U.
    Cutler, C. S.
    QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2008, 52 (03): : 254 - 266
  • [29] Cytochrome P450 metabolism of bupropion
    Goodale, E
    Ascher, J
    Batey, S
    BIOLOGICAL PSYCHIATRY, 1999, 45 (08) : 75S - 75S
  • [30] Porcine cytochrome P450 and metabolism
    Skaanild, Mette Tingleff
    CURRENT PHARMACEUTICAL DESIGN, 2006, 12 (11) : 1421 - 1427