Antarctic calving loss rivals ice-shelf thinning

被引:78
|
作者
Greene, Chad A. [1 ]
Gardner, Alex S. [1 ]
Schlegel, Nicole-Jeanne [1 ]
Fraser, Alexander D. [2 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[2] Univ Tasmania, Inst Marine & Antarctic Studies, Australian Antarctic Program Partnership, Hobart, Tas, Australia
基金
美国国家航空航天局;
关键词
RETREAT; MODEL; MELT; INSTABILITY; GREENLAND; DYNAMICS; GLACIERS; DRIVERS; SURFACE; SHEET;
D O I
10.1038/s41586-022-05037-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Antarctica's ice shelves help to control the flow of glacial ice as it drains into the ocean, meaning that the rate of global sea-level rise is subject to the structural integrity of these fragile, floating extensions of the ice sheet(1-3). Until now, data limitations have made it difficult to monitor the growth and retreat cycles of ice shelves on a large scale, and the full impact of recent calving-front changes on ice-shelf buttressing has not been understood. Here, by combining data from multiple optical and radar satellite sensors, we generate pan-Antarctic, spatially continuous coastlines at roughly annual resolution since 1997. We show that from 1997 to 2021, Antarctica experienced a net loss of 36,701 +/- 1,465 square kilometres (1.9 per cent) of ice-shelf area that cannot be fully regained before the next series of major calving events, which are likely to occur in the next decade. Mass loss associated with ice-front retreat (5,874 +/- 396 gigatonnes) has been approximately equal to mass change owing to ice-shelf thinning over the past quarter of a century (6,113 +/- 452 gigatonnes), meaning that the total mass loss is nearly double that which could be measured by altimetry-based surveys alone. We model the impacts of Antarctica's recent coastline evolution in the absence of additional feed backs, and find that calving and thinning have produced equivalent reductions in ice-shelf buttressing since 2007, and that further retreat could produce increasingly significant sea-level rise in the future.
引用
收藏
页码:948 / +
页数:18
相关论文
共 50 条
  • [11] Development of ice-shelf estuaries promotes fractures and calving
    Boghosian, Alexandra L.
    Pitcher, Lincoln H.
    Smith, Laurence C.
    Kosh, Elena
    Alexander, Patrick M.
    Tedesco, Marco
    Bell, Robin E.
    NATURE GEOSCIENCE, 2021, 14 (12) : 899 - +
  • [12] Antarctic ecosystem responses following ice-shelf collapse and iceberg calving: Science review and future research
    Ingels, Jeroen
    Aronson, Richard B.
    Smith, Craig R.
    Baco, Amy
    Bik, Holly M.
    Blake, James A.
    Brandt, Angelika
    Cape, Mattias
    Demaster, David
    Dolan, Emily
    Domack, Eugene
    Fire, Spencer
    Geisz, Heidi
    Gigliotti, Michael
    Griffiths, Huw
    Halanych, Kenneth M.
    Havermans, Charlotte
    Huettmann, Falk
    Ishman, Scott
    Kranz, Sven A.
    Leventer, Amy
    Mahon, Andrew R.
    McClintock, James
    McCormick, Michael L.
    Mitchell, B. Greg
    Murray, Alison E.
    Peck, Lloyd
    Rogers, Alex
    Shoplock, Barbara
    Smith, Kathryn E.
    Steffel, Brittan
    Stukel, Michael R.
    Sweetman, Andrew K.
    Taylor, Michelle
    Thurber, Andrew R.
    Truffer, Martin
    van de Putte, Anton
    Vanreusel, Ann
    Zamora-Duran, Maria Angelica
    WILEY INTERDISCIPLINARY REVIEWS-CLIMATE CHANGE, 2021, 12 (01)
  • [13] Viscous and elastic buoyancy stresses as drivers of ice-shelf calving
    Mosbeux, Cyrille
    Wagner, Till J. W.
    Becker, Maya K.
    Fricker, Helen A.
    JOURNAL OF GLACIOLOGY, 2020, 66 (258) : 643 - 657
  • [14] Bathymetric Influences on Antarctic Ice-Shelf Melt Rates
    Goldberg, D. N.
    Smith, T. A.
    Narayanan, S. H. K.
    Heimbach, P.
    Morlighem, M.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2020, 125 (11)
  • [15] Oceanic and atmospheric forcing of Larsen C Ice-Shelf thinning
    Holland, P. R.
    Brisbourne, A.
    Corr, H. F. J.
    McGrath, D.
    Purdon, K.
    Paden, J.
    Fricker, H. A.
    Paolo, F. S.
    Fleming, A. H.
    CRYOSPHERE, 2015, 9 (03): : 1005 - 1024
  • [16] Firn air depletion as a precursor of Antarctic ice-shelf collapse
    Kuipers Munneke, Peter
    Ligtenberg, Stefan R. M.
    van den Broeke, Michiel R.
    Vaughan, David G.
    JOURNAL OF GLACIOLOGY, 2014, 60 (220) : 205 - 214
  • [17] Parameterization for subgrid-scale motion of ice-shelf calving fronts
    Albrecht, T.
    Martin, M.
    Haseloff, M.
    Winkelmann, R.
    Levermann, A.
    CRYOSPHERE, 2011, 5 (01): : 35 - 44
  • [18] Antarctic Sea Ice Holds the Fate of Antarctic Ice-Shelf Basal Melting in a Warming Climate
    Kusahara, Kazuya
    Tatebe, Hiroaki
    Hajima, Tomohiro
    Saito, Fuyuki
    Kawamiya, Michio
    JOURNAL OF CLIMATE, 2023, 36 (03) : 713 - 743
  • [19] Antarctic ice-shelf thickness from satellite radar altimetry
    Griggs, J. A.
    Bamber, J. L.
    JOURNAL OF GLACIOLOGY, 2011, 57 (203) : 485 - 498
  • [20] Structure and robustness to species loss in Arctic and Antarctic ice-shelf meta-ecosystem webs
    Carscallen, W. Mather A.
    Romanuk, Tamara N.
    ECOLOGICAL MODELLING, 2012, 245 : 208 - 218