Quantile Stein Variational Gradient Descent for Batch Bayesian Optimization

被引:0
|
作者
Gong, Chengyue [1 ]
Peng, Jian [2 ]
Liu, Qiang [1 ]
机构
[1] UT Austin, Dept Comp Sci, Austin, TX 78712 USA
[2] Univ Illinois, Champaign, IL USA
基金
美国国家科学基金会;
关键词
REPRESENTATION; RISK;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Batch Bayesian optimization has been shown to be an efficient and successful approach for blackbox function optimization, especially when the evaluation of cost function is highly expensive but can be efficiently parallelized. In this paper, we introduce a novel variational framework for batch query optimization, based on the argument that the query batch should be selected to have both high diversity and good worst case performance. This motivates us to introduce a variational objective that combines a quantile-based risk measure (for worst case performance) and entropy regularization (for enforcing diversity). We derive a gradient-based particle optimization algorithm for solving our quantile-based variational objective, which generalizes Stein variational gradient descent (SVGD) by Liu & Wang (2016). We evaluate our method on a number of real-world applications, and show that it consistently outperforms other recent state-of-the-art batch Bayesian optimization methods.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Stein Variational Policy Gradient
    Liu, Yang
    Ramachandran, Prajit
    Liu, Qiang
    Peng, Jian
    CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI2017), 2017,
  • [42] The Parallel Knowledge Gradient Method for Batch Bayesian Optimization
    Wu, Jian
    Frazier, Peter, I
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [43] Non-Gaussian Parameter Inference for Hydrogeological Models Using Stein Variational Gradient Descent
    Ramgraber, Maximilian
    Weatherl, Robin
    Blumensaat, Frank
    Schirmer, Mario
    WATER RESOURCES RESEARCH, 2021, 57 (04)
  • [44] STEIN VARIATIONAL GRADIENT DESCENT ON INFINITE-DIMENSIONAL SPACE AND APPLICATIONS TO STATISTICAL INVERSE PROBLEMS
    Jia, Junxiong
    LI, Peijun
    Meng, Deyu
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (04) : 2225 - 2252
  • [45] Annealed stein variational gradient descent for improved uncertainty estimation in full-waveform inversion
    Corrales, Miguel
    Berti, Sean
    Denel, Bertrand
    Williamson, Paul
    Aleardi, Mattia
    Ravasi, Matteo
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2025, 241 (02) : 1088 - 1113
  • [46] Adadb: Adaptive Diff-Batch Optimization Technique for Gradient Descent
    Khan, Muhammad U. S.
    Jawad, Muhammad
    Khan, Samee U.
    IEEE ACCESS, 2021, 9 : 99581 - 99588
  • [47] Regularized Stein Variational Gradient Flow
    He, Ye
    Balasubramanian, Krishnakumar
    Sriperumbudur, Bharath K.
    Lu, Jianfeng
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024,
  • [48] Variational Bayesian Tensor Quantile Regression
    Jin, Yunzhi
    Zhang, Yanqing
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2025, 41 (02) : 733 - 756
  • [49] Variational Bayesian Tensor Quantile Regression
    Yunzhi Jin
    Yanqing Zhang
    Acta Mathematica Sinica,English Series, 2025, (02) : 733 - 756
  • [50] BAYESIAN STOCHASTIC GRADIENT DESCENT FOR STOCHASTIC OPTIMIZATION WITH STREAMING INPUT DATA
    Liu, Tianyi
    Lin, Yifan
    Zhou, Enlu
    SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (01) : 389 - 418