Quantile Stein Variational Gradient Descent for Batch Bayesian Optimization

被引:0
|
作者
Gong, Chengyue [1 ]
Peng, Jian [2 ]
Liu, Qiang [1 ]
机构
[1] UT Austin, Dept Comp Sci, Austin, TX 78712 USA
[2] Univ Illinois, Champaign, IL USA
基金
美国国家科学基金会;
关键词
REPRESENTATION; RISK;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Batch Bayesian optimization has been shown to be an efficient and successful approach for blackbox function optimization, especially when the evaluation of cost function is highly expensive but can be efficiently parallelized. In this paper, we introduce a novel variational framework for batch query optimization, based on the argument that the query batch should be selected to have both high diversity and good worst case performance. This motivates us to introduce a variational objective that combines a quantile-based risk measure (for worst case performance) and entropy regularization (for enforcing diversity). We derive a gradient-based particle optimization algorithm for solving our quantile-based variational objective, which generalizes Stein variational gradient descent (SVGD) by Liu & Wang (2016). We evaluate our method on a number of real-world applications, and show that it consistently outperforms other recent state-of-the-art batch Bayesian optimization methods.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Riemannian Stein Variational Gradient Descent for Bayesian Inference
    Liu, Chang
    Zhu, Jun
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3627 - 3634
  • [2] Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
    Liu, Qiang
    Wang, Dilin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [3] Multilevel Stein variational gradient descent with applications to Bayesian inverse problems
    Alsup, Terrence
    Venturi, Luca
    Peherstorfer, Benjamin
    MATHEMATICAL AND SCIENTIFIC MACHINE LEARNING, VOL 145, 2021, 145 : 93 - +
  • [4] A Modified Stein Variational Inference Algorithm with Bayesian and Gradient Descent Techniques
    Zhang, Limin
    Dong, Jing
    Zhang, Junfang
    Yang, Junzi
    SYMMETRY-BASEL, 2022, 14 (06):
  • [5] Stein Variational Gradient Descent as Gradient Flow
    Liu, Qiang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [6] Stein Variational Gradient Descent Without Gradient
    Han, Jun
    Liu, Qiang
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [7] On the geometry of Stein variational gradient descent
    Duncan, A.
    Nusken, N.
    Szpruch, L.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [8] Projected Stein Variational Gradient Descent
    Chen, Peng
    Ghattas, Omar
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [9] Grassmann Stein Variational Gradient Descent
    Liu, Xing
    Zhu, Harrison
    Ton, Jean-Francois
    Wynne, George
    Duncan, Andrew
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [10] Federated Generalized Bayesian Learning via Distributed Stein Variational Gradient Descent
    Kassab, Rahif
    Simeone, Osvaldo
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 2180 - 2192