Learning-based Image Ground Segmentation Using Multiple Cues

被引:0
|
作者
Liu, Manhua [1 ]
Yao, Jianchao [2 ]
Zhao, Hui [1 ]
Yap, Kim-Hui [2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Instrument Sci & Engn, Sch EIEE, Shanghai 200240, Peoples R China
[2] Nanyang Technol Univ, EEE, Singapore 639798, Singapore
关键词
NAVIGATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image ground segmentation is an important task in the area of computer vision for the robot navigation because the ground region is often taken as the traversable terrain. In this paper, we propose a learning-based method for image ground segmentation which applies the Adaboost learning method to combine multiple cues for detection of the ground region in an image. Firstly, an image is segmented into a number of small regions. Color, texture, location and shape cues are then extracted for the representation of each image region. Finally, the ground classifier is designed using Adaboost learning method and is applied to label the image regions as ground or non-ground. This approach not only can detect the grounds with different appearances for long range perception, but also identify obstacles which have the similar appearance as the ground. Experimental results are presented to show the effectiveness of the proposed algorithm for the ground segmentation of images in a wide range of scenes.
引用
收藏
页码:1827 / 1831
页数:5
相关论文
共 50 条
  • [21] Deep Learning-Based Fetal Development Ultrasound Image Segmentation and Registration
    Zhou, Yang
    Cao, Chuang
    TRAITEMENT DU SIGNAL, 2023, 40 (01) : 343 - 349
  • [22] An Improved Teaching–Learning-Based Optimization for Multilevel Thresholding Image Segmentation
    Ziqi Jiang
    Feng Zou
    Debao Chen
    Jiahui Kang
    Arabian Journal for Science and Engineering, 2021, 46 : 8371 - 8396
  • [23] Deep learning-based automated image segmentation for concrete petrographic analysis
    Song, Yu
    Huang, Zilong
    Shen, Chuanyue
    Shi, Humphrey
    Lange, David A.
    CEMENT AND CONCRETE RESEARCH, 2020, 135 (135)
  • [24] Street tree segmentation from mobile laser scanning data using deep learning-based image instance segmentation
    Li, Qiujie
    Yan, Yu
    URBAN FORESTRY & URBAN GREENING, 2024, 92
  • [25] Review of Image Augmentation Used in Deep Learning-Based Material Microscopic Image Segmentation
    Ma, Jingchao
    Hu, Chenfei
    Zhou, Peng
    Jin, Fangfang
    Wang, Xu
    Huang, Haiyou
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [26] Selecting the best optimizers for deep learning-based medical image segmentation
    Mortazi, Aliasghar
    Cicek, Vedat
    Keles, Elif
    Bagci, Ulas
    FRONTIERS IN RADIOLOGY, 2023, 3
  • [27] Proceeding the categorization of microplastics through deep learning-based image segmentation
    Huang, Hui
    Cai, Huiwen
    Qureshi, Junaid Ullah
    Mehdi, Syed Raza
    Song, Hong
    Liu, Caicai
    Di, Yanan
    Shi, Huahong
    Yao, Weimin
    Sun, Zehao
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 896
  • [28] Deep learning-based image segmentation for instantaneous flame front extraction
    Straessle, Ruben M.
    Faldella, Filippo
    Doll, Ulrich
    EXPERIMENTS IN FLUIDS, 2024, 65 (06)
  • [29] Deploying Deep Learning-Based Image Segmentation Models Via CERR
    Iyer, A.
    LoCastro, E.
    Deasy, J.
    Apte, A.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [30] Precise Segmentation of Multiple Organs in CT Volumes Using Learning-Based Approach and Information Theory
    Lu, Chao
    Zheng, Yefeng
    Birkbeck, Neil
    Zhang, Jingdan
    Kohlberger, Timo
    Tietjen, Christian
    Boettger, Thomas
    Duncan, James S.
    Zhou, S. Kevin
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2012, PT II, 2012, 7511 : 462 - 469