Cartilage Tissue Engineering: Preventing Tissue Scaffold Contraction Using a 3D-Printed Polymeric Cage

被引:0
|
作者
Visscher, Dafydd O. [1 ,2 ]
Bos, Ernst J. [1 ,2 ]
Peeters, Mirte [2 ,3 ]
Kuzmin, Nikolay V. [4 ]
Groot, Marie Louise [4 ]
Helder, Marco N. [2 ,3 ]
van Zuijlen, Paul P. M. [1 ,2 ,5 ]
机构
[1] Vrije Univ Amsterdam Med Ctr, Dept Plast Reconstruct & Hand Surg, NL-1081 HV Amsterdam, Netherlands
[2] CTRM MOVE Res Inst, Amsterdam, Netherlands
[3] Vrije Univ Amsterdam Med Ctr, Dept Orthoped Surg, De Boelelaan 1117, NL-1081 HV Amsterdam, Netherlands
[4] Vrije Univ Amsterdam, Dept Phys, LaserLaB Amsterdam, Amsterdam, Netherlands
[5] Red Cross Hosp Beverwijk, Beverwijk, Netherlands
关键词
MESENCHYMAL STEM-CELLS; IN-VITRO; MEDIATED CONTRACTION; CROSS-LINKING; CHONDROGENIC DIFFERENTIATION; HYALURONIC-ACID; ADIPOSE-TISSUE; COLLAGEN; EAR; HYDROGELS;
D O I
10.1089/ten.tec.2016.0073
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Scaffold contraction is a common but underestimated problem in the field of tissue engineering. It becomes particularly problematic when creating anatomically complex shapes such as the ear. The aim of this study was to develop a contraction-free biocompatible scaffold construct for ear cartilage tissue engineering. To address this aim, we used three constructs: (i) a fibrin/hyaluronic acid (FB/HA) hydrogel, (ii) a FB/HA hydrogel combined with a collagen I/III scaffold, and (iii) a cage construct containing (ii) surrounded by a 3D-printed poly-e-caprolactone mold. A wide range of different cell types were tested within these constructs, including chondrocytes, perichondrocytes, adipose-derived mesenchymal stem cells, and their combinations. After in vitro culturing for 1, 14, and 28 days, all constructs were analyzed. Macroscopic observation showed severe contraction of the cell-seeded hydrogel (i). This could be prevented, in part, by combining the hydrogel with the collagen scaffold (ii) and prevented in total using the 3D-printed cage construct (iii). (Immuno) histological analysis, multiphoton laser scanning microscopy, and biomechanical analysis showed extracellular matrix deposition and increased Young's modulus and thereby the feasibility of ear cartilage engineering. These results demonstrated that the 3D-printed cage construct is an adequate model for contraction-free ear cartilage engineering using a range of cell combinations.
引用
收藏
页码:573 / 584
页数:12
相关论文
共 50 条
  • [41] Cellulose-in-cellulose 3D-printed bioaerogels for bone tissue engineering
    Ana Iglesias-Mejuto
    Nanthilde Malandain
    Tânia Ferreira-Gonçalves
    Inés Ardao
    Catarina Pinto Reis
    Anna Laromaine
    Anna Roig
    Carlos A. García-González
    Cellulose, 2024, 31 : 515 - 534
  • [42] Acoustic and mechanical characterization of 3D-printed scaffolds for tissue engineering applications
    Aliabouzar, Mitra
    Zhang, Grace Lijie
    Sarkar, Kausik
    BIOMEDICAL MATERIALS, 2018, 13 (05)
  • [43] 3D-Printed Hybrid Collagen/GelMA Hydrogels for Tissue Engineering Applications
    Nagaraj, Anushree
    Etxeberria, Alaitz Etxabide
    Naffa, Rafea
    Zidan, Ghada
    Seyfoddin, Ali
    BIOLOGY-BASEL, 2022, 11 (11):
  • [44] Hierarchically porous 3D-printed ceramic scaffolds for bone tissue engineering
    Chan, Shareen S. L.
    Black, Jay R.
    Franks, George, V
    Heath, Daniel E.
    BIOMATERIALS ADVANCES, 2025, 169
  • [45] Evaluating 3D-Printed Biomaterials as Scaffolds for Vascularized Bone Tissue Engineering
    Wang, Martha O.
    Vorwald, Charlotte E.
    Dreher, Maureen L.
    Mott, Eric J.
    Cheng, Ming-Huei
    Cinar, Ali
    Mehdizadeh, Hamidreza
    Somo, Sami
    Dean, David
    Brey, Eric M.
    Fisher, John P.
    ADVANCED MATERIALS, 2015, 27 (01) : 138 - 144
  • [46] Cellulose-in-cellulose 3D-printed bioaerogels for bone tissue engineering
    Iglesias-Mejuto, Ana
    Malandain, Nanthilde
    Ferreira-Goncalves, Tania
    Ardao, Ines
    Reis, Catarina Pinto
    Laromaine, Anna
    Roig, Anna
    Garcia-Gonzalez, Carlos A.
    CELLULOSE, 2024, 31 (01) : 515 - 534
  • [47] Can 3D-Printed Bioactive Glasses Be the Future of Bone Tissue Engineering?
    Dukle, Amey
    Murugan, Dhanashree
    Nathanael, Arputharaj Joseph
    Rangasamy, Loganathan
    Oh, Tae-Hwan
    POLYMERS, 2022, 14 (08)
  • [48] Production of 3D-Printed Tympanic Membrane Scaffolds as a Tissue Engineering Application
    Ilhan, Elif
    Ulag, Songul
    Sahin, Ali
    Ekren, Nazmi
    Kilic, Osman
    Oktar, Faik Nuzhet
    Gunduz, Oguzhan
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING (IWBBIO 2020), 2020, 12108 : 175 - 184
  • [49] Polymeric 3D printed structures for soft-tissue engineering
    Stratton, Scott
    Manoukian, Ohan S.
    Patel, Ravi
    Wentworth, Adam
    Rudraiah, Swetha
    Kumbar, Sangamesh G.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2018, 135 (24)
  • [50] Virtual Design of 3D-Printed Bone Tissue Engineered Scaffold Shape Using Mechanobiological Modeling: Relationship of Scaffold Pore Architecture to Bone Tissue Formation
    Alshammari, Adel
    Alabdah, Fahad
    Wang, Weiguang
    Cooper, Glen
    POLYMERS, 2023, 15 (19)