INDIRECT DRILL CONDITION MONITORING BASED ON MACHINE TOOL CONTROL SYSTEM DATA

被引:2
|
作者
Kolar, Petr [1 ]
Burian, David [1 ]
Fojtu, Petr [2 ]
Masek, Petr [2 ]
Fiala, Stepan [1 ]
Chladek, Stepan [1 ]
Petracek, Petr [1 ]
Sveda, Jiri [1 ]
Rytir, Michal [1 ,2 ]
机构
[1] Czech Tech Univ, Czech Inst Informat Robot & Cybernet, Dept Ind Prod & Automation, Prague, Czech Republic
[2] Czech Tech Univ, Fac Mech Engn, Res Ctr Mfg Technol, Dept Prod Machines & Equipment, Prague, Czech Republic
来源
MM SCIENCE JOURNAL | 2022年 / 2022卷
关键词
tool wear monitoring; edge computing; spiral drill wear; smart machine tools; correlation analysis; CUTTING FORCE; SIGNAL; VIBRATION;
D O I
10.17973/MMSJ.2022_10_2022119
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Automatic process monitoring, including tool wear monitoring, is a key aspect of improving the energy efficiency and cost of the machining process. The tool flank wear continuously increases during drilling operations. The intensity of tool wear may vary depending on the local properties of the material and the process settings. This paper shows the potential of drill condition monitoring based on machine tool control system data, namely spindle drive current and Z slide current. The workpiece vibration measurement is used as a reference method. Correlations of various features of monitored signals are evaluated. These features are shown to depend, in general, on the instantaneous drilling depth. Among the features investigated, the RMS signal has been shown to exhibit a significant correlation with tool wear. The results were compared for two values of cutting speed. The correlation of selected features is shown to be independent of the total lifetime of the tool, thus demonstrating the attractiveness of these features for tool wear prediction. Specifically, the root mean square of the vibration and spindle torque signals strongly correlate with flank wear near the bottom of the hole while the root mean square of the drive current of the drilling axis strongly correlates with flank wear near the middle of the hole.
引用
收藏
页码:5905 / 5912
页数:8
相关论文
共 50 条
  • [21] Machine Tool Condition Monitoring Based on an Adaptive Gaussian Mixture Model
    Yu, Jianbo
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2012, 134 (03):
  • [22] The applicability of various indirect monitoring methods to tool condition monitoring in drilling
    Jantunen, Erkki
    International Journal of COMADEM, 2004, 7 (03): : 24 - 31
  • [23] Tool condition monitoring of PCB milling machine based on vibration analysis
    Gomathi, K.
    Balaji, A.
    MATERIALS TODAY-PROCEEDINGS, 2021, 45 : 3386 - 3397
  • [24] Tool wear condition monitoring method based on relevance vector machine
    Ruhong Jia
    Caixu Yue
    Qiang Liu
    Wei Xia
    Yiyuan Qin
    Mingwei Zhao
    The International Journal of Advanced Manufacturing Technology, 2023, 128 : 4721 - 4734
  • [25] Tool wear condition monitoring method based on relevance vector machine
    Jia, Ruhong
    Yue, Caixu
    Liu, Qiang
    Xia, Wei
    Qin, Yiyuan
    Zhao, Mingwei
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 128 (11-12): : 4721 - 4734
  • [26] Monitoring Technology Research of Tool Wear Condition Based on Machine Vision
    Li, Pengyang
    Li, Yan
    Yang, Mingshun
    Zheng, Jianming
    Yuan, Qilong
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 2783 - 2787
  • [27] The applicability of various indirect monitoring methods to tool condition monitoring in drilling
    Jantunen, E
    CONDITION MONITORING AND DIAGNOSTIC ENGINEERING MANAGEMENT, 2001, : 781 - 791
  • [28] Vibration — A tool for machine diagnostics and condition monitoring
    K N Gupta
    Sadhana, 1997, 22 : 393 - 410
  • [29] Vibration - A tool for machine diagnostics and condition monitoring
    Gupta, KN
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 1997, 22 (3): : 393 - 410
  • [30] A study on the usage of current signature for tool condition monitoring of drill bit
    Gokulachandran, J.
    Reddy, B. Bharath Krishna
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 4532 - 4536