A Blood-Based Multi-Gene Expression Classifier to Distinguish Benign From Malignant Pulmonary Nodules

被引:0
|
作者
Vachani, Anil [1 ]
Atalay, Michael [1 ]
Bremner, Ross [1 ]
Broussard, Brad [1 ]
Copeland, Karen [1 ]
Egressy, Katarine [1 ]
Ferguson, J. [1 ]
Friedman, Lyssa [1 ]
Harris, Randall [1 ]
Leach, Joseph [1 ]
McQuary, Philip [1 ]
O'Brien, Thomas [1 ]
Sarkar, Saiyad [1 ]
Sheibani, Nadia [1 ]
Shuff, Jaime [1 ]
Siler, Thomas [1 ]
Southwell, Clyde [1 ]
Hesterberg, Lyndal [1 ]
机构
[1] Univ Penn, Philadelphia, PA 19104 USA
关键词
D O I
10.1016/j.chest.2017.08.661
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
引用
收藏
页码:629A / 630A
页数:2
相关论文
共 50 条
  • [31] Classifying solitary pulmonary nodules - New imaging methods to distinguish malignant, benign lesions
    Hanley, KS
    Rubins, JB
    POSTGRADUATE MEDICINE, 2003, 114 (02) : 29 - 35
  • [32] COMPARISON OF A HIGH SPECIFICITY BLOOD-BASED BIOMARKER WITH PET/CT FOR IDENTIFYING MALIGNANT PULMONARY NODULES
    Long, Kathryn
    Pitcher, Trevor
    Kammer, Michael
    Nair, Viswam S.
    Silvestri, Gerard A.
    CHEST, 2023, 164 (04) : 4186A - 4187A
  • [33] Assessment of Plasma Proteomics Biomarker's Ability to Distinguish Benign From Malignant Lung Nodules Results of the PANOPTIC (Pulmonary Nodule Plasma Proteomic Classifier) Trial
    Silvestri, Gerard A.
    Tanner, Nichole T.
    Kearney, Paul
    Vachani, Anil
    Massion, Pierre P.
    Porter, Alexander
    Springmeyer, Steven C.
    Fang, Kenneth C.
    Midthun, David
    Mazzone, Peter J.
    CHEST, 2018, 154 (03) : 491 - 500
  • [34] Computed Tomography-Based Radiomic Classifier Distinguishes Malignant from Benign Pulmonary Nodules in the National Lung Screening Trial
    Peikert, T.
    Duan, F.
    Rajagopalan, S.
    Karwoski, R.
    Qin, Z.
    Sicks, J.
    Clay, R.
    Robb, R.
    Bartholmai, B.
    Maldonado, F.
    JOURNAL OF THORACIC ONCOLOGY, 2017, 12 (11) : S2169 - S2169
  • [35] COMPARISON OF THE PERFORMANCE OF A BLOOD-BASED INTEGRATED CLASSIFIER IN RISK STRATIFYING INCIDENTAL AND SCREENING-DETECTED PULMONARY NODULES
    Sigal, Barry W.
    Morganroth, Melvin L.
    Bernstein, Michael A.
    Bowling, Mark R.
    Shah, Archan
    Seaman, Joseph C.
    Kurman, Jonathan S.
    Gordon, Joshiah R.
    Romero, Arthur Oliver
    Aragaki, Alejandro
    Berry, Donald F.
    Bansal, Sandeep
    Biswas, Abhishek
    Pritchett, Michael A.
    CHEST, 2022, 162 (04) : 1644A - 1645A
  • [36] Saliva Metabolic Profiling for Benign and Malignant Pulmonary Nodules Distinguish and Early Lung Cancer Detection
    Wu, J.
    Yang, D.
    Bai, C.
    JOURNAL OF THORACIC ONCOLOGY, 2023, 18 (11) : S173 - S173
  • [37] Classification of Benign and Malignant Pulmonary Nodules Based on Deep Learning
    Zhang, Yuechao
    Zhang, Jianxin
    Zhao, Lasheng
    Wei, Xiaopeng
    Zhang, Qiang
    2018 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2018), 2018, : 156 - 160
  • [38] Do characteristics of pulmonary nodules on computed tomography in children with known osteosarcoma help distinguish whether the nodules are malignant or benign?
    Brader, Peter
    Abramson, Sara J.
    Price, Anita P.
    Ishill, Nicole M.
    Emily, Zabor C.
    Moskowitz, Chaya S.
    La Quaglia, Michael P.
    Ginsberg, Michelle S.
    JOURNAL OF PEDIATRIC SURGERY, 2011, 46 (04) : 729 - 735
  • [39] BUDGET IMPACT OF A BLOOD-BASED INTEGRATED CLASSIFIER TEST TO RECLASSIFY RISK OF PULMONARY NODULES IN A US COMMERCIAL PAYER SETTING
    Smith, M.
    Le, K.
    Campbell, D.
    Migliaccio-Walle, K.
    Kang, A.
    Springmeyer, S.
    VALUE IN HEALTH, 2023, 26 (06) : S88 - S88
  • [40] Computer-aided diagnosis to distinguish benign from malignant solitary pulmonary nodules on radiographs: ROC analysis of radiologists'
    Shiraishi, J
    Abe, H
    Engelmann, R
    Aoyama, M
    MacMahon, H
    Doi, K
    RADIOLOGY, 2003, 227 (02) : 469 - 474