On the Domination Number of Generalized Petersen Graphs P(ck, k)

被引:0
|
作者
Wang, Haoli [1 ]
Xu, Xirong [2 ]
Yang, Yuansheng [2 ]
Wang, Guoqing [3 ]
机构
[1] Tianjin Normal Univ, Coll Comp & Informat Engn, Tianjin 300387, Peoples R China
[2] Dalian Univ Technol, Dept Comp Sci, Dalian 116024, Peoples R China
[3] Tianjin Polytech Univ, Dept Math, Tianjin 300387, Peoples R China
关键词
Domination number; Generalized Petersen Graph;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V (G), E(G)) be a simple connected and undirected graph with vertex set V(G) and edge set E(G). A set S subset of V(C) is a dominating set if for each v is an element of V(G) either v is an element of S or v is adjacent to some w is an element of S. That is, S is a dominating set if and only if N[S] = V(G). The domination number gamma(G) is the minimum cardinalities of minimal dominating sets. In this paper, we give an improved upper bound on the domination number of generalized Petersen graphs P(ck, k) for c >= 3 and k >= 3. We also prove that gamma(P(4k, k)) = 2k + 1 for even k, gamma(P(5k, k)) = 3k for all k >= 1, and gamma(P(6k, k)) = inverted right perpendicular (10k)(3) inverted left perpendicular for k >= 1 and k not equal 2.
引用
收藏
页码:33 / 49
页数:17
相关论文
共 50 条
  • [41] 2-rainbow domination in generalized Petersen graphs P(n, 3)
    Xu, Guangjun
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (11) : 2570 - 2573
  • [42] On the Burning Number of Generalized Petersen Graphs
    Sim, Kai An
    Tan, Ta Sheng
    Wong, Kok Bin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (03) : 1657 - 1670
  • [43] On the Burning Number of Generalized Petersen Graphs
    Kai An Sim
    Ta Sheng Tan
    Kok Bin Wong
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1657 - 1670
  • [44] The decycling number of generalized Petersen graphs
    Gao, Liqing
    Xu, Xirong
    Wang, Jian
    Zhu, Dejun
    Yang, Yuansheng
    DISCRETE APPLIED MATHEMATICS, 2015, 181 : 297 - 300
  • [45] On the rna number of generalized Petersen graphs
    Sehrawat, Deepak
    Bhattacharjya, Bikash
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (03) : 451 - 466
  • [46] On the cooling number of the generalized Petersen graphs
    Sim, Kai An
    Wong, Kok Bin
    AIMS MATHEMATICS, 2024, 9 (12): : 36351 - 36370
  • [47] The Independence Number for the Generalized Petersen Graphs
    Fox, Joseph
    Gera, Ralucca
    Stanica, Pantelimon
    ARS COMBINATORIA, 2012, 103 : 439 - 451
  • [48] Independence number of generalized Petersen graphs
    Besharati, Nazli
    Ebrahimi, J. B.
    Azadi, A.
    ARS COMBINATORIA, 2016, 124 : 239 - 255
  • [49] [1,2]-Domination in generalized Petersen graphs
    Beggas, Fairouz
    Turau, Volker
    Haddad, Mohammed
    Kheddouci, Hamamache
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (05)
  • [50] Power Domination in Cylinders, Tori, and Generalized Petersen Graphs
    Barrera, Roberto
    Ferrero, Daniela
    NETWORKS, 2011, 58 (01) : 43 - 49