Let G = (V (G), E(G)) be a simple connected and undirected graph with vertex set V(G) and edge set E(G). A set S subset of V(C) is a dominating set if for each v is an element of V(G) either v is an element of S or v is adjacent to some w is an element of S. That is, S is a dominating set if and only if N[S] = V(G). The domination number gamma(G) is the minimum cardinalities of minimal dominating sets. In this paper, we give an improved upper bound on the domination number of generalized Petersen graphs P(ck, k) for c >= 3 and k >= 3. We also prove that gamma(P(4k, k)) = 2k + 1 for even k, gamma(P(5k, k)) = 3k for all k >= 1, and gamma(P(6k, k)) = inverted right perpendicular (10k)(3) inverted left perpendicular for k >= 1 and k not equal 2.
机构:
Univ Ljubljana, FS, Askerceva 6, Ljubljana 1000, Slovenia
Rudolfovo Sci & Technol Ctr Novo Mesto, Podbreznik 15, Novo Mesto 8000, SloveniaUniv Ljubljana, FS, Askerceva 6, Ljubljana 1000, Slovenia
机构:
Univ Ljubljana, Fac Mech Engn, Askerceva 6, Ljubljana 1000, Slovenia
Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, SloveniaUniv Ljubljana, Fac Mech Engn, Askerceva 6, Ljubljana 1000, Slovenia
机构:
Univ Ljubljana, Fac Mech Engn, Askerceva 6, Ljubljana 1000, Slovenia
Inst Math, Phys & Mech, Jadranska 19, Ljubljana 1000, SloveniaUniv Ljubljana, Fac Mech Engn, Askerceva 6, Ljubljana 1000, Slovenia
Brezovnik, Simon
论文数: 引用数:
h-index:
机构:
Rupnik Poklukar, Darja
Zerovnik, Janez
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Mech Engn, Askerceva 6, Ljubljana 1000, Slovenia
Inst Math, Phys & Mech, Jadranska 19, Ljubljana 1000, SloveniaUniv Ljubljana, Fac Mech Engn, Askerceva 6, Ljubljana 1000, Slovenia