On the Domination Number of Generalized Petersen Graphs P(ck, k)

被引:0
|
作者
Wang, Haoli [1 ]
Xu, Xirong [2 ]
Yang, Yuansheng [2 ]
Wang, Guoqing [3 ]
机构
[1] Tianjin Normal Univ, Coll Comp & Informat Engn, Tianjin 300387, Peoples R China
[2] Dalian Univ Technol, Dept Comp Sci, Dalian 116024, Peoples R China
[3] Tianjin Polytech Univ, Dept Math, Tianjin 300387, Peoples R China
关键词
Domination number; Generalized Petersen Graph;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V (G), E(G)) be a simple connected and undirected graph with vertex set V(G) and edge set E(G). A set S subset of V(C) is a dominating set if for each v is an element of V(G) either v is an element of S or v is adjacent to some w is an element of S. That is, S is a dominating set if and only if N[S] = V(G). The domination number gamma(G) is the minimum cardinalities of minimal dominating sets. In this paper, we give an improved upper bound on the domination number of generalized Petersen graphs P(ck, k) for c >= 3 and k >= 3. We also prove that gamma(P(4k, k)) = 2k + 1 for even k, gamma(P(5k, k)) = 3k for all k >= 1, and gamma(P(6k, k)) = inverted right perpendicular (10k)(3) inverted left perpendicular for k >= 1 and k not equal 2.
引用
收藏
页码:33 / 49
页数:17
相关论文
共 50 条
  • [1] On rainbow domination of generalized Petersen graphs P ( ck , k )
    Zerovnik, Janez
    DISCRETE APPLIED MATHEMATICS, 2024, 357 : 440 - 448
  • [2] Double Roman Domination in Generalized Petersen Graphs P(ck, k)
    Rupnik Poklukar, Darja
    Zerovnik, Janez
    SYMMETRY-BASEL, 2022, 14 (06):
  • [3] On 2-Rainbow Domination of Generalized Petersen Graphs P(ck,k)
    Brezovnik, Simon
    Rupnik Poklukar, Darja
    Zerovnik, Janez
    MATHEMATICS, 2023, 11 (10)
  • [4] Domination in the generalized Petersen graph P(ck, k)
    Zhao, Weiliang
    Zheng, Meifang
    Wu, Lirong
    UTILITAS MATHEMATICA, 2010, 81 : 157 - 163
  • [5] On the domination number of the generalized Petersen graphs
    Behzad, Arash
    Behzad, Mehdi
    Praeger, Cheryl E.
    DISCRETE MATHEMATICS, 2008, 308 (04) : 603 - 610
  • [6] On the domination number of generalized Petersen graphs P(n, 2)
    Fu Xueliang
    Yang Yuansheng
    Jiang Baoqi
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2445 - 2451
  • [7] On the domination number of generalized Petersen graphs P(n,3)
    Fu Xueliang
    Yang Yuansheng
    Jiang Baoqi
    ARS COMBINATORIA, 2007, 84 : 373 - 383
  • [8] On the power domination number of the generalized Petersen graphs
    Guangjun Xu
    Liying Kang
    Journal of Combinatorial Optimization, 2011, 22 : 282 - 291
  • [9] The exact domination number of the generalized Petersen graphs
    Yan, Hong
    Kang, Liying
    Xu, Guangjun
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2596 - 2607
  • [10] On the power domination number of the generalized Petersen graphs
    Xu, Guangjun
    Kang, Liying
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 22 (02) : 282 - 291