Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies

被引:21
|
作者
Rahimnejad, Maedeh [1 ]
Rezvaninejad, Raziyehsadat [2 ]
Rezvaninejad, Rayehehossadat
Franca, Rodrigo [3 ]
机构
[1] Univ Montreal, Inst Biomed Engn, Montreal, PQ, Canada
[2] Hormozgan Univ Med Sci, Fac Dent, Dept Oral Med, Hormozgan, Iran
[3] Univ Manitoba, Fac Hlth Sci, Coll Dent, Dept Restorat Dent, Winnipeg, MB, Canada
关键词
bioprinting; 3D printing; bone tissue engineering; biomaterials; TRICALCIUM PHOSPHATE SCAFFOLDS; INDUCED PHASE-SEPARATION; BIPHASIC CALCIUM PHOSPHATES; BIOACTIVE GLASS SCAFFOLDS; HIGH-DENSITY POLYETHYLENE; MESENCHYMAL STEM-CELLS; IN-VITRO; CERAMIC SCAFFOLDS; BIOLOGICAL-PROPERTIES; OSTEOGENIC DIFFERENTIATION;
D O I
10.1088/2057-1976/ac21ab
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
This review focuses on recently developed printable biomaterials for bone and mineralized tissue engineering. 3D printing or bioprinting is an advanced technology to design and fabricate complex functional 3D scaffolds, mimicking native tissue for in vivo applications. We categorized the biomaterials into two main classes: 3D printing and bioprinting. Various biomaterials, including natural, synthetic biopolymers and their composites, have been studied. Biomaterial inks or bioinks used for bone and mineralized tissue regeneration include hydrogels loaded with minerals or bioceramics, cells, and growth factors. In 3D printing, the scaffold is created by acellular biomaterials (biomaterial inks), while in 3D bioprinting, cell-laden hydrogels (bioinks) are used. Two main classes of bioceramics, including bioactive and bioinert ceramics, are reviewed. Bioceramics incorporation provides osteoconductive properties and induces bone formation. Each biopolymer and mineral have its advantages and limitations. Each component of these composite biomaterials provides specific properties, and their combination can ameliorate the mechanical properties, bioactivity, or biological integration of the 3D printed scaffold. Present challenges and future approaches to address them are also discussed.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] 3D Printing of Bioinspired Biomaterials for Tissue Regeneration
    Li, Tian
    Chang, Jiang
    Zhu, Yufang
    Wu, Chengtie
    ADVANCED HEALTHCARE MATERIALS, 2020, 9 (23)
  • [42] FRESH 3D BIOPRINTING OF SURGICAL TISSUE TRAINING MODELS USING NATIVE BIOMATERIALS
    Lee, Andrew
    Patten, Riley
    Hinton, Thomas
    TISSUE ENGINEERING PART A, 2022, 28 : S464 - S464
  • [43] 3D Bioprinting of Lignocellulosic Biomaterials
    Shavandi, Amin
    Hosseini, Soraya
    Okoro, Oseweuba Valentine
    Nie, Lei
    Eghbali Babadi, Farahnaz
    Melchels, Ferry
    ADVANCED HEALTHCARE MATERIALS, 2020, 9 (24)
  • [44] Powder-based 3D printing for bone tissue engineering
    Brunello, G.
    Sivolella, S.
    Meneghello, R.
    Ferroni, L.
    Gardin, C.
    Piattelli, A.
    Zavan, B.
    Bressan, E.
    BIOTECHNOLOGY ADVANCES, 2016, 34 (05) : 740 - 753
  • [45] Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing
    Barbara Leukers
    Hülya Gülkan
    Stephan H. Irsen
    Stefan Milz
    Carsten Tille
    Matthias Schieker
    Hermann Seitz
    Journal of Materials Science: Materials in Medicine, 2005, 16 : 1121 - 1124
  • [46] Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing
    Leukers, B
    Gülkan, H
    Irsen, SH
    Milz, S
    Tille, C
    Schieker, M
    Seitz, H
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2005, 16 (12) : 1121 - 1124
  • [47] Extrusion 3D printing advances for craniomaxillofacial bone tissue engineering
    Murali, Athira
    Parameswaran, Ramesh
    POLYMER-PLASTICS TECHNOLOGY AND MATERIALS, 2024, 63 (07): : 889 - 912
  • [48] Application of 3D Printing Technology in Bone Tissue Engineering: A Review
    Feng, Yashan
    Zhu, Shijie
    Mei, Di
    Li, Jiang
    Zhang, Jiaxiang
    Yang, Shaolong
    Guan, Shaokang
    CURRENT DRUG DELIVERY, 2021, 18 (07) : 847 - 861
  • [49] Inkjet 3D bioprinting for tissue engineering and pharmaceutics
    Zhao, Deng-ke
    Xu, He-qi
    Yin, Jun
    Yang, Hua-yong
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2022, 23 (12): : 955 - 973
  • [50] 3D Bioprinting of Hydrogels for Cartilage Tissue Engineering
    Huang, Jianghong
    Xiong, Jianyi
    Wang, Daping
    Zhang, Jun
    Yang, Lei
    Sun, Shuqing
    Liang, Yujie
    GELS, 2021, 7 (03)