A new proof of existence of equilibria in infinite normal form games

被引:1
|
作者
Zhou, Y. H. [1 ,2 ]
Yu, J. [3 ]
Wang, L. [2 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Guizhou, Peoples R China
[2] Peking Univ, Ctr Syst & Control, Coll Engn, Beijing 100871, Peoples R China
[3] Guizhou Univ, Dept Math, Guiyang 5500025, Guizhou, Peoples R China
关键词
Infinite normal form game; Nash mapping; Fixed point;
D O I
10.1016/j.aml.2010.09.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we prove the existence of Nash equilibria in infinite normal form games with compact sets of strategies and continuous payoffs by constructing Nash mappings. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:253 / 256
页数:4
相关论文
共 50 条
  • [11] QUANTAL RESPONSE EQUILIBRIA FOR NORMAL-FORM GAMES
    MCKELVEY, RD
    PALFREY, TR
    GAMES AND ECONOMIC BEHAVIOR, 1995, 10 (01) : 6 - 38
  • [12] Equilibrium refinement for infinite normal-form games
    Univ. California, dep. agricultural resource economics, Berkeley CA 94720, United States
    Econom, 6 (1421-1443):
  • [13] EQUILIBRIUM REFINEMENT FOR INFINITE NORMAL-FORM GAMES
    SIMON, LK
    STINCHCOMBE, MB
    ECONOMETRICA, 1995, 63 (06) : 1421 - 1443
  • [14] On the existence of Pareto undominated mixed-strategy Nash equilibrium in normal-form games with infinite actions
    Fu, Haifeng
    ECONOMICS LETTERS, 2021, 201
  • [15] On nash equilibria in normal-form games with vectorial payoffs
    Ropke, Willem
    Roijers, Diederik M.
    Nowe, Ann
    Radulescu, Roxana
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2022, 36 (02)
  • [16] On nash equilibria in normal-form games with vectorial payoffs
    Willem Röpke
    Diederik M. Roijers
    Ann Nowé
    Roxana Rădulescu
    Autonomous Agents and Multi-Agent Systems, 2022, 36
  • [17] WEAKLY STRICT EQUILIBRIA IN FINITE NORMAL-FORM GAMES
    BORM, PEM
    CAO, R
    GARCIAJURADO, I
    MENDEZNAYA, L
    OR SPEKTRUM, 1995, 17 (04) : 235 - 238
  • [18] Distance-Based Equilibria in Normal-Form Games
    Acar, Erman
    Meir, Reshef
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 1750 - 1757
  • [19] Equilibria and approximate equilibria in infinite potential games
    Voorneveld, M
    ECONOMICS LETTERS, 1997, 56 (02) : 163 - 169
  • [20] Nash equilibrium and generalized integration for infinite normal form games
    Stinchcombe, MB
    GAMES AND ECONOMIC BEHAVIOR, 2005, 50 (02) : 332 - 365