A scalarization-based dominance evolutionary algorithm for many-objective optimization

被引:20
|
作者
Khan, Burhan [1 ]
Hanoun, Samer [1 ]
Johnstone, Michael [1 ]
Lim, Chee Peng [1 ]
Creighton, Douglas [1 ]
Nahavandi, Saeid [1 ]
机构
[1] Deakin Univ, IISRI, 75 Pigdons Rd, Waurn Ponds 3216, Australia
关键词
Multi-objective; Many-objective; Optimization; Genetic algorithm; Evolutionary computation; Decomposition; Scalarization; Reference vectors; MULTIOBJECTIVE OPTIMIZATION; SELECTION; DESIGN; MOEA/D;
D O I
10.1016/j.ins.2018.09.031
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Classical Pareto-dominance based multi-objective evolutionary algorithms underperform when applied to optimization problems with more than three objectives. A class of multi-objective evolutionary algorithms introduced in the literature, utilizing pre-determined reference points acting as target vectors to maintain diversity in the objective space, has shown promising results. Inspired by this approach, we propose a scalarization-based dominance evolutionary algorithm (SDEA) that utilizes a reference point-based method and combine it with a novel sorting strategy that employs fitness values determined via scalarization. SDEA reduces computation complexity by eliminating the need for a Paretodominance approach to obtain non-dominated solutions. By means of a set of common benchmark optimization problems with 3- to 15-objectives, we compare the performance of SDEA with state-of-the-art many-objective evolutionary algorithms. The results indicate that SDEA outperforms existing algorithms in undertaking complex optimization problems with a high number of objectives, and has comparable outcomes over low-dimensional objective space benchmark problems. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:236 / 252
页数:17
相关论文
共 50 条
  • [31] Evolutionary many-objective optimization algorithm based on angle and clustering
    Xiong, Zhijian
    Yang, Jingming
    Hu, Ziyu
    Zhao, Zhiwei
    Wang, Xiaojing
    APPLIED INTELLIGENCE, 2021, 51 (04) : 2045 - 2062
  • [32] Evolutionary many-objective optimization algorithm based on angle and clustering
    Zhijian Xiong
    Jingming Yang
    Ziyu Hu
    Zhiwei Zhao
    Xiaojing Wang
    Applied Intelligence, 2021, 51 : 2045 - 2062
  • [33] Evolutionary algorithm using adaptive fuzzy dominance and reference point for many-objective optimization
    Das, Siddhartha Shankar
    Islam, Md Monirul
    Arafat, Naheed Anjum
    SWARM AND EVOLUTIONARY COMPUTATION, 2019, 44 : 1092 - 1107
  • [34] A Controlled Strengthened Dominance Relation for Evolutionary Many-Objective Optimization
    Shen, Jiangtao
    Wang, Peng
    Wang, Xinjing
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (05) : 3645 - 3657
  • [35] Many-objective evolutionary algorithm based on relative non-dominance matrix
    Zhang, Maoqing
    Wang, Lei
    Guo, Weian
    Li, Wuzhao
    Li, Dongyang
    Hu, Bo
    Wu, Qidi
    INFORMATION SCIENCES, 2021, 547 : 963 - 983
  • [36] A many-objective evolutionary algorithm based on dominance and decomposition with reference point adaptation
    Zou, Juan
    Zhang, Zhenghui
    Zheng, Jinhua
    Yang, Shengxiang
    KNOWLEDGE-BASED SYSTEMS, 2021, 231
  • [37] A New Decomposition Many-Objective Evolutionary Algorithm Based on - Efficiency Order Dominance
    Guo Xiaofang
    ADVANCES IN INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, PT I, 2018, 81 : 242 - 249
  • [38] Evolutionary Many-Objective Algorithm Using Decomposition-Based Dominance Relationship
    Chen, Lei
    Liu, Hai-Lin
    Tan, Kay Chen
    Cheung, Yiu-Ming
    Wang, Yuping
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (12) : 4129 - 4139
  • [39] A Pareto dominance relation based on reference vectors for evolutionary many-objective optimization
    Wang, Shuai
    Wang, Hui
    Wei, Zichen
    Wang, Feng
    Zhu, Qingling
    Zhao, Jia
    Cui, Zhihua
    APPLIED SOFT COMPUTING, 2024, 157
  • [40] A Localized High-Fidelity-Dominance-Based Many-Objective Evolutionary Algorithm
    Saxena, Dhish Kumar
    Mittal, Sukrit
    Kapoor, Sarang
    Deb, Kalyanmoy
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (04) : 923 - 937