Percolation transition in fluids: Scaling behavior of the spanning probability functions

被引:27
|
作者
Skvor, Jiri [1 ]
Nezbeda, Ivo
Brovchenko, Ivan
Oleinikova, Alla
机构
[1] Univ JE Purkyne, Fac Sci, Usti Nad Labem 40096, Czech Republic
[2] Acad Sci Czech Republic, Inst Chem Proc Fundamentals, E Hala Lab Thermodynam, CR-16502 Prague 6, Czech Republic
[3] Univ Dortmund, D-44227 Dortmund, Germany
关键词
WATER;
D O I
10.1103/PhysRevLett.99.127801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine different spanning probability functions (wrapping and crossing) near the percolation threshold of a supercritical square-well fluid and determine the threshold values of these probabilities, which may be universal for all fluids. It is shown that for a continuous system, over a wide range of system size, the wrapping probabilities can be described by universal scaling functions, whereas the crossing probabilities do not show such universal behavior over the same range of system size. The obtained universal functions for the wrapping probabilities can be used for an estimation of the percolation threshold in fluids in general. The results for the crossing probabilities allow us then to characterize large clusters in real fluids.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Scaling behavior in very small percolation lattices
    Elliott, JB
    Gilkes, ML
    Hauger, JA
    Hirsch, AS
    Hjort, E
    Porile, NT
    Scharenberg, RP
    Srivastava, BK
    Tincknell, ML
    Warren, PG
    PHYSICAL REVIEW C, 1997, 55 (03): : 1319 - 1326
  • [22] ANOMALOUS SCALING BEHAVIOR IN PERCOLATION WITH 3 COLORS
    BRADLEY, RM
    DEBIERRE, JM
    STRENSKI, PN
    PHYSICAL REVIEW LETTERS, 1992, 68 (15) : 2332 - 2335
  • [23] SCALING BEHAVIOR OF PERCOLATION SURFACES IN 3 DIMENSIONS
    STRENSKI, PN
    BRADLEY, RM
    DEBIERRE, JM
    PHYSICAL REVIEW LETTERS, 1991, 66 (10) : 1330 - 1333
  • [24] Scaling behavior of explosive percolation on the square lattice
    Ziff, Robert M.
    PHYSICAL REVIEW E, 2010, 82 (05)
  • [25] Percolation line and response functions in simple supercritical fluids
    Skvor, Jiri
    Nezbeda, Ivo
    MOLECULAR PHYSICS, 2011, 109 (01) : 133 - 139
  • [26] BOUNDARY-CONDITIONS AND SCALING FUNCTIONS OF PERCOLATION MODELS
    HU, CK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (21): : L813 - L820
  • [27] Universal critical exponents and scaling functions in continuum percolation
    Hu, CK
    Wang, FG
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1997, 31 : S271 - S277
  • [28] Near-minimal spanning trees: A scaling exponent in probability models
    Aldous, David J.
    Bordenave, Charles
    Lelarge, Marc
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (05): : 962 - 976
  • [29] HYDRODYNAMIC DISPERSION NEAR THE PERCOLATION-THRESHOLD - SCALING AND PROBABILITY DENSITIES
    SAHIMI, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (18): : L1293 - L1298
  • [30] Transition of Temporal Scaling Behavior in Percolation Assisted Shear-branching Structure during Plastic Deformation
    Jingli Ren
    Cun Chen
    Gang Wang
    Peter K. Liaw
    Scientific Reports, 7