Quasi-Monte Carlo algorithms for diffusion equations in high dimensions

被引:11
|
作者
Venkiteswaran, G
Junk, M
机构
[1] Univ Kaiserslautern, Graduiertenkolleg Math & Praxis, D-67653 Kaiserslautern, Germany
[2] Univ Saarland, Fachbereich Math, D-66041 Saarbrucken, Germany
关键词
QMC; diffusion equation; MC;
D O I
10.1016/j.matcom.2004.09.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Diffusion equation posed on a high dimensional space may occur as a sub-problem in advection-diffusion problems (see [G. Venkiteswaran, M. Junk, A QMC approach for high dimensional Fokker-Planck equations modelling polymeric liquids, Math. Comput. Simul. 68 (2005) 43-56.] for a specific application). Although the transport part can be dealt with the method of characteristics, the efficient simulation of diffusion in high dimensions is a challenging task. The traditional Monte Carlo method (MC) applied to diffusion problems converges and is N-1/2 accurate, where N is the number of particles. It is well known that for integration, quasi-Monte Carlo (QMC) outperforms Monte Carlo in the sense that one can achieve N-1 convergence, up to a logarithmic factor. This is our starting point to develop methods based on Lecot's approach [C. Lecot, F.E. Khettabi, Quasi-Monte Carlo simulation of diffusion, Journal of Complexity 15 (1999) 342-359.], which are applicable in high dimensions, with a hope to achieve better speed of convergence. Through a number of numerical experiments we observe that some of the QMC methods not only generalize to high dimensions but also show faster convergence in the results and thus, slightly outperform standard MC. (C) 2004 IMACS. Published by Elsevier B.V All rights reserved.
引用
收藏
页码:23 / 41
页数:19
相关论文
共 50 条
  • [21] Langevin Quasi-Monte Carlo
    Liu, Sifan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [22] On quasi-Monte Carlo integrations
    Sobol, IM
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (2-5) : 103 - 112
  • [23] Density Estimation by Monte Carlo and Quasi-Monte Carlo
    L'Ecuyer, Pierre
    Puchhammer, Florian
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2020, 2022, 387 : 3 - 21
  • [24] On Monte Carlo and Quasi-Monte Carlo for Matrix Computations
    Alexandrov, Vassil
    Davila, Diego
    Esquivel-Flores, Oscar
    Karaivanova, Aneta
    Gurov, Todor
    Atanassov, Emanouil
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2017, 2018, 10665 : 249 - 257
  • [25] Monte Carlo and quasi-Monte Carlo methods - Preface
    Spanier, J
    Pengilly, JH
    MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (8-9) : R11 - R13
  • [26] MULTILEVEL QUASI-MONTE CARLO METHODS FOR LOGNORMAL DIFFUSION PROBLEMS
    Kuo, Frances Y.
    Scheichl, Robert
    Schwab, Christoph
    Sloan, Ian H.
    Ullmann, Elisabeth
    MATHEMATICS OF COMPUTATION, 2017, 86 (308) : 2827 - 2860
  • [27] Monte Carlo and quasi-Monte Carlo algorithms for the Barker-Ferry equation with low complexity
    Gurov, TV
    Witlock, PA
    Dimov, IT
    NUMERICAL METHODS AND APPLICATIONS, 2003, 2542 : 108 - 116
  • [28] Quasi-Monte Carlo Simulation of Diffusion in a Spatially Nonhomogeneous Medium
    El Haddad, Rami
    Lecot, Christian
    Venkiteswaran, Gopalakrishnan
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 339 - +
  • [29] Error in Monte Carlo, quasi-error in Quasi-Monte Carlo
    Kleiss, Ronald
    Lazopoulos, Achilleas
    COMPUTER PHYSICS COMMUNICATIONS, 2006, 175 (02) : 93 - 115
  • [30] Quasi-Monte Carlo: A high-dimensional experiment
    Sobol, Ilya M.
    Shukhman, Boris V.
    MONTE CARLO METHODS AND APPLICATIONS, 2014, 20 (03): : 167 - 171