THE SOBOLEV-MORAWETZ APPROACH FOR THE ENERGY SCATTERING OF NONLINEAR SCHRODINGER-TYPE EQUATIONS WITH RADIAL DATA

被引:1
|
作者
Van Duong Dinh [1 ,2 ]
Keraani, Sahbi [1 ]
机构
[1] Univ Lille, CNRS, Lab Paul Painleve, UMR 8524, F-59655 Villeneuve Dascq, France
[2] HCMC Univ Pedag, Dept Math, 280 An Duong Vuong, Ho Chi Minh, Vietnam
来源
关键词
Nonlinear Choquard equation; Ground state; Scattering; Radial Sobolev embedding;   Nonlinear Schrodinger equation; GROUND-STATE; BLOW-UP; UNIQUENESS; EXISTENCE; PROOF;
D O I
10.3934/dcdss.2020407
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on recent works of Dodson-Murphy [12] and Arora-DodsonMurphy [3], we give a unified approach for the energy scattering with radially symmetric initial data for nonlinear Schrodinger equations and nonlinear Choquard equations in any dimensions N > 2. We also discuss its applications for other Schrodinger-type equations.
引用
收藏
页码:2837 / 2876
页数:40
相关论文
共 50 条
  • [1] On Nonlinear Schrodinger-Type Equations with Nonlinear Damping
    Antonelli, Paolo
    Carles, Remi
    Sparber, Christof
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (03) : 740 - 762
  • [2] Nonlinear singular Schrodinger-type equations
    Lange, H
    Poppenberg, M
    Teismann, H
    NONLINEAR THEORY OF GENERALIZED FUNCTIONS, 1999, 401 : 113 - 128
  • [3] The coupled nonlinear Schrodinger-type equations
    Abdelrahman, Mahmoud A. E.
    Hassan, S. Z.
    Inc, Mustafa
    MODERN PHYSICS LETTERS B, 2020, 34 (06):
  • [4] On nonparaxial nonlinear Schrodinger-type equations
    Cano, B.
    Duran, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 373 (373)
  • [5] Simulation of coherent structures in nonlinear Schrodinger-type equations
    Alonso-Mallo, I.
    Duran, A.
    Reguera, N.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (21) : 8180 - 8198
  • [6] Exact solutions to a class of nonlinear Schrodinger-type equations
    Zhang, Jin-Liang
    Wang, Ming-Liang
    PRAMANA-JOURNAL OF PHYSICS, 2006, 67 (06): : 1011 - 1022
  • [7] Complete integrability of derivative nonlinear Schrodinger-type equations
    Tsuchida, T
    Wadati, M
    INVERSE PROBLEMS, 1999, 15 (05) : 1363 - 1373
  • [8] Low energy scattering for nonlinear Schrodinger equations in fractional order Sobolev spaces
    Nakamura, M
    Ozawa, T
    REVIEWS IN MATHEMATICAL PHYSICS, 1997, 9 (03) : 397 - 410
  • [9] Spectral approach to homogenization of nonstationary Schrodinger-type equations
    Suslina, Tatiana
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) : 1466 - 1523
  • [10] Solitons for the coupled matrix nonlinear Schrodinger-type equations and the related Schrodinger flow
    Zhong, Shiping
    Zhao, Zehui
    Wan, Xinjie
    OPEN MATHEMATICS, 2023, 21 (01):