The coupled nonlinear Schrodinger-type equations

被引:44
|
作者
Abdelrahman, Mahmoud A. E. [1 ,2 ]
Hassan, S. Z. [3 ,5 ]
Inc, Mustafa [4 ]
机构
[1] Taibah Univ, Coll Sci, Dept Math, Al Madinah Al Munawarah, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[3] Imam Abdulrahman Bin Faisal Univ, Coll Sci & Humanities, Dept Math, Dammam, Saudi Arabia
[4] Firat Univ, Fac Sci, Dept Math, TR-23119 Elazig, Turkey
[5] POB 12020, City Jubail, Saudi Arabia
来源
MODERN PHYSICS LETTERS B | 2020年 / 34卷 / 06期
关键词
Coupled nonlinear Schrodinger-type equations; solitons; exp(-phi(xi))-expansion technique; sine-cosine technique; Riccati-Bernoulli sub-ODE technique; exact solution; TRAVELING-WAVE SOLUTIONS; ELLIPTIC FUNCTION-METHOD; F-EXPANSION METHOD; SINE-COSINE METHOD; TANH METHOD; EVOLUTION-EQUATIONS; SOLITARY WAVE; (G'/G)-EXPANSION METHOD; SOLITONS; DARK;
D O I
10.1142/S0217984920500785
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nonlinear Schrodinger equations can model nonlinear waves in plasma physics, optics, fluid and atmospheric theory of profound water waves and so on. In this work, the exp(-phi(xi))-expansion, the sine-cosine and Riccati-Bernoulli sub-ODE techniques have been utilized to establish solitons, periodic waves and several types of solutions for the coupled nonlinear Schrodinger equations. These methods with the help of symbolic computations via Mathematica 10 are robust and adequate to solve partial differential nonlinear equations in mathematical physics. Finally, 3D figures for some selected solutions have been depicted.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Solitons for the coupled matrix nonlinear Schrodinger-type equations and the related Schrodinger flow
    Zhong, Shiping
    Zhao, Zehui
    Wan, Xinjie
    OPEN MATHEMATICS, 2023, 21 (01):
  • [2] On Nonlinear Schrodinger-Type Equations with Nonlinear Damping
    Antonelli, Paolo
    Carles, Remi
    Sparber, Christof
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (03) : 740 - 762
  • [3] Nonlinear singular Schrodinger-type equations
    Lange, H
    Poppenberg, M
    Teismann, H
    NONLINEAR THEORY OF GENERALIZED FUNCTIONS, 1999, 401 : 113 - 128
  • [4] On nonparaxial nonlinear Schrodinger-type equations
    Cano, B.
    Duran, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 373 (373)
  • [5] Multi-soliton solutions for the coupled nonlinear Schrodinger-type equations
    Meng, Gao-Qing
    Gao, Yi-Tian
    Yu, Xin
    Shen, Yu-Jia
    Qin, Yi
    NONLINEAR DYNAMICS, 2012, 70 (01) : 609 - 617
  • [6] Simulation of coherent structures in nonlinear Schrodinger-type equations
    Alonso-Mallo, I.
    Duran, A.
    Reguera, N.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (21) : 8180 - 8198
  • [7] Exact solutions to a class of nonlinear Schrodinger-type equations
    Zhang, Jin-Liang
    Wang, Ming-Liang
    PRAMANA-JOURNAL OF PHYSICS, 2006, 67 (06): : 1011 - 1022
  • [8] Complete integrability of derivative nonlinear Schrodinger-type equations
    Tsuchida, T
    Wadati, M
    INVERSE PROBLEMS, 1999, 15 (05) : 1363 - 1373
  • [9] Homogenization of Schrodinger-type equations
    Suslina, T. A.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2016, 50 (03) : 241 - 246
  • [10] A coupled nonlinear Schrodinger-type equation and its Darboux transformation
    Geng, Xianguo
    Wei, Jiao
    Xue, Bo
    MODERN PHYSICS LETTERS B, 2018, 32 (17):