The coupled nonlinear Schrodinger-type equations

被引:44
|
作者
Abdelrahman, Mahmoud A. E. [1 ,2 ]
Hassan, S. Z. [3 ,5 ]
Inc, Mustafa [4 ]
机构
[1] Taibah Univ, Coll Sci, Dept Math, Al Madinah Al Munawarah, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[3] Imam Abdulrahman Bin Faisal Univ, Coll Sci & Humanities, Dept Math, Dammam, Saudi Arabia
[4] Firat Univ, Fac Sci, Dept Math, TR-23119 Elazig, Turkey
[5] POB 12020, City Jubail, Saudi Arabia
来源
MODERN PHYSICS LETTERS B | 2020年 / 34卷 / 06期
关键词
Coupled nonlinear Schrodinger-type equations; solitons; exp(-phi(xi))-expansion technique; sine-cosine technique; Riccati-Bernoulli sub-ODE technique; exact solution; TRAVELING-WAVE SOLUTIONS; ELLIPTIC FUNCTION-METHOD; F-EXPANSION METHOD; SINE-COSINE METHOD; TANH METHOD; EVOLUTION-EQUATIONS; SOLITARY WAVE; (G'/G)-EXPANSION METHOD; SOLITONS; DARK;
D O I
10.1142/S0217984920500785
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nonlinear Schrodinger equations can model nonlinear waves in plasma physics, optics, fluid and atmospheric theory of profound water waves and so on. In this work, the exp(-phi(xi))-expansion, the sine-cosine and Riccati-Bernoulli sub-ODE techniques have been utilized to establish solitons, periodic waves and several types of solutions for the coupled nonlinear Schrodinger equations. These methods with the help of symbolic computations via Mathematica 10 are robust and adequate to solve partial differential nonlinear equations in mathematical physics. Finally, 3D figures for some selected solutions have been depicted.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Global well-posedness of the Cauchy problem for nonlinear Schrodinger-type equations
    Miao, Changxing
    Zhang, Bo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 17 (01) : 181 - 200
  • [22] Global search for localised modes in scalar and vector nonlinear Schrodinger-type equations
    Alfimov, G. L.
    Barashenkov, I., V
    Fedotov, A. P.
    Smirnov, V. V.
    Zezyulin, D. A.
    PHYSICA D-NONLINEAR PHENOMENA, 2019, 397 : 39 - 53
  • [24] Semiclassical analysis of discretizations of Schrodinger-type equations
    Markowich, PA
    Pietra, P
    Pohl, C
    VLSI DESIGN, 1999, 9 (04) : 397 - 413
  • [25] Explicit Solutions of the Nonlinear Schrodinger-Type Equation
    Syzdykova, Arailym
    Kudaibergenov, Gaziz
    NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES, NTADES 2023, 2024, 449 : 179 - 187
  • [26] New extended auxiliary equation method and its applications to nonlinear Schrodinger-type equations
    Zayed, E. M. E.
    Alurrfi, K. A. E.
    OPTIK, 2016, 127 (20): : 9131 - 9151
  • [27] BACKLUND-TRANSFORMATIONS AND EXPLICIT SOLUTIONS OF CERTAIN INHOMOGENEOUS NONLINEAR SCHRODINGER-TYPE EQUATIONS
    PORSEZIAN, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (07): : L337 - L343
  • [28] Extended tanh-function method and reduction of nonlinear Schrodinger-type equations to a quadrature
    Ibrahim, R. S.
    El-Kalaawy, O. H.
    CHAOS SOLITONS & FRACTALS, 2007, 31 (04) : 1001 - 1008
  • [29] Apposite solutions to fractional nonlinear Schrodinger-type evolution equations occurring in quantum mechanics
    Islam, Md. Tarikul
    Akbar, Md. Ali
    Guner, Ozkan
    Bekir, Ahmet
    MODERN PHYSICS LETTERS B, 2021, 35 (30):
  • [30] Spots and stripes in nonlinear Schrodinger-type equations with nearly one-dimensional potentials
    Haragus, Mariana
    Kapitula, Todd
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (01) : 75 - 94