Study on the CCM breakdown voltage of proton exchange membrane fuel cells

被引:2
|
作者
Liu, Zhenbin [1 ]
Wang, Shuang [1 ]
Xia, Lei [1 ]
Guan, Shumeng [1 ]
Zhou, Fen [1 ,2 ]
Tan, Jinting [1 ]
Pan, Mu [1 ,2 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Foshan Xianhu Lab Adv Energy Sci & Technol Guangdo, Xianhu Hydrogen Valley, Foshan 528200, Peoples R China
关键词
PEM; CCM; Short circuit; Breakdown voltage; PEMFC; CARBON CORROSION;
D O I
10.1016/j.ijhydene.2022.04.205
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton exchange membrane (PEM) short circuits are one of the failure forms of fuel cells. In this paper, the change in breakdown voltage (BV) after the preparation of PEMs into catalyst coated membranes (CCMs) is studied, and the impact of the catalyst layer (CL) and its composition on the BV of the CCM is analysed. The results show that the BV of the CCM is significantly lower than that of the uncoated PEM. The higher the platinum (Pt) loading of the coated CL is, the lower the BV. Further research finds that the BV of the single-side CL coated CCM only decreases when the CL side is connected to the positive pole of the power supply, while it is comparable to that of the PEM when the CL side is connected to the negative pole. The experimental results demonstrate that the Pt and carbon particles in the CCM undergo electrochemical reactions during the breakdown process when the CL is connected to the positive pole, which eventually leads to thermal breakdown. Therefore, when the BV is chosen for detecting whether the CCM preparation process causes PEM damage, single-side CL-coated CCM should be adopted, and the CL should be connected to the negative pole of the power supply.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:20951 / 20956
页数:6
相关论文
共 50 条
  • [21] A performance and degradation study of Nafion 212 membrane for proton exchange membrane fuel cells
    Fernandes, Adriano C.
    Ticianelli, Edson Antonio
    JOURNAL OF POWER SOURCES, 2009, 193 (02) : 547 - 554
  • [22] Experimental study on voltage instability of proton exchange membrane fuel cell: Types and boundaries
    Wang, Zhina
    Fu, Xi
    Shao, Yangbin
    Zhang, Xiyuan
    Hu, Zunyan
    Xu, Liangfei
    Li, Jianqiu
    Ouyang, Minggao
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2024, 21 (10) : 2368 - 2377
  • [23] Numerical Study on the Water Transport Through the Membrane of Proton Exchange Membrane Fuel Cells
    Li, Shian
    Wei, Rongqiang
    Shen, Qiuwan
    Yang, Guogang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (08): : 7152 - 7162
  • [24] Recent Advances in Electrocatalysts for Proton Exchange Membrane Fuel Cells and Alkaline Membrane Fuel Cells
    Xiao, Fei
    Wang, Yu-Cheng
    Wu, Zhi-Peng
    Chen, Guangyu
    Yang, Fei
    Zhu, Shangqian
    Siddharth, Kumar
    Kong, Zhijie
    Lu, Aolin
    Li, Jin-Cheng
    Zhong, Chuan-Jian
    Zhou, Zhi-You
    Shao, Minhua
    ADVANCED MATERIALS, 2021, 33 (50)
  • [25] Performance and instabilities of proton exchange membrane fuel cells
    Kadjo, J. -J. A.
    Garnier, J. -P.
    Maye, J. -P.
    Relot, F.
    Martemianov, S.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2006, 42 (05) : 467 - 475
  • [26] Research on electrocatalysts of proton exchange membrane fuel cells
    Zhao Xiaolin
    Han Minfang
    RARE METAL MATERIALS AND ENGINEERING, 2007, 36 : 645 - 647
  • [27] Functional additives for proton exchange membrane fuel cells
    Liu, Weihao
    Liu, Dandan
    Wan, Xin
    Shui, Jianglan
    ENERGYCHEM, 2025, 7 (02)
  • [28] Acoustical Characteristics of Proton Exchange Membrane Fuel Cells
    Al-Rweg, Mohmad
    Ahmeda, Khaled
    Albarbar, Alhussein
    IEEE ACCESS, 2021, 9 (09): : 81068 - 81077
  • [29] A Review on Prognostics of Proton Exchange Membrane Fuel Cells
    Liu, Hao
    Chen, Jian
    Ouyang, Quan
    Su, Hongye
    2016 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2016,
  • [30] Proton exchange membrane fuel cells and future challenges
    Mench, MM
    Wang, CY
    ENERGY CONVERSION AND APPLICATION, VOL I AND II, 2001, : 470 - 480