Change Detection Based on Multi-Feature Clustering Using Differential Evolution for Landsat Imagery

被引:15
|
作者
Song, Mi [1 ]
Zhong, Yanfei [1 ]
Ma, Ailong [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Hubei, Peoples R China
来源
REMOTE SENSING | 2018年 / 10卷 / 10期
基金
中国国家自然科学基金;
关键词
change detection; detail enhancement; differential evolution; multi-feature clustering; noise robust; remote sensing imagery; structural similarity; UNSUPERVISED CHANGE DETECTION; REMOTE-SENSING IMAGES; STRUCTURAL SIMILARITY; SAR IMAGES; OPTIMIZATION; ALGORITHM;
D O I
10.3390/rs10101664
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Change detection (CD) of natural land cover is important for environmental protection and to maintain an ecological balance. The Landsat series of satellites provide continuous observation of the Earth's surface and is sensitive to reflection of water, soil and vegetation. It offers fine spatial resolutions (15-80 m) and short revisit times (16-18 days). Therefore, Landsat imagery is suitable for monitoring natural land cover changes. Clustering-based CD methods using evolutionary algorithms (EAs) can be applied to Landsat images to obtain optimal changed and unchanged clustering centers (clusters) with minimum clustering index. However, they directly analyze difference image (DI), which finds itself subject to interference by Gaussian noise and local brightness distortion in Landsat data, resulting in false alarms in detection results. In order to reduce image interferences and improve CD accuracy, we proposed an unsupervised CD method based on multi-feature clustering using the differential evolution algorithm (M-DECD) for Landsat Imagery. First, according to characteristics of Landsat data, a multi-feature space is constructed with three elements: Wiener de-noising, detail enhancement, and structural similarity. Then, a CD method based on differential evolution (DE) algorithm and fuzzy clustering is proposed to obtain global optimal clusters in the multi-feature space, and generate a binary change map (CM). In addition, the control parameters of the DE algorithm are adjusted to improve the robustness of M-DECD. The experimental results obtained with four Landsat datasets confirm the effectiveness of M-DECD. Compared with the results of conventional methods and the current state-of-the-art methods based on evolutionary clustering, the detection accuracies of the M-DECD on the Mexico dataset and the Sardinia dataset are very close to the best results. The accuracies of the M-DECD in the Alaska dataset and the large Canada dataset increased by about 3.3% and 11.9%, respectively. This indicates that multiple features are suitable for Landsat images and the DE algorithm is effective in searching for an optimal CD result.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Trajectory similarity clustering based on multi-feature distance measurement
    Qingying Yu
    Yonglong Luo
    Chuanming Chen
    Shigang Chen
    Applied Intelligence, 2019, 49 : 2315 - 2338
  • [22] A Multi-Feature Fusion-Based Change Detection Method for Remote Sensing Images
    Cai, Liping
    Shi, Wenzhong
    Hao, Ming
    Zhang, Hua
    Gao, Lipeng
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2018, 46 (12) : 2015 - 2022
  • [23] Detection of crackle events using a multi-feature approach
    Mendes, L.
    Vogiatzis, I. M.
    Perantoni, E.
    Kaimakamis, E.
    Chouvarda, I.
    Maglaveras, N.
    Henriques, J.
    Carvalho, P.
    Paiva, R. P.
    2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 3679 - 3683
  • [24] A Multi-Feature Fusion-Based Change Detection Method for Remote Sensing Images
    Liping Cai
    Wenzhong Shi
    Ming Hao
    Hua Zhang
    Lipeng Gao
    Journal of the Indian Society of Remote Sensing, 2018, 46 : 2015 - 2022
  • [25] Object-Oriented Change Detection for Multi-source Images Using Multi-Feature Fusion
    Zhang, Baoming
    Lu, Jun
    Guo, Haitao
    Xu, Junfeng
    Zhao, Chuan
    2016 THIRD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND PATTERN RECOGNITION (AIPR), 2016,
  • [26] Video text detection based on multi-feature fusion
    Xiao, Bing
    Zhao, Jing
    Zhao, Cong
    Ma, Junliang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (02) : 2125 - 2136
  • [27] Pedestrian Detection Algorithm Based on Multi-Feature Cascade
    Wen Jia
    Liu Pengfei
    Jia Chu
    Wang Hongjun
    2018 27TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND NETWORKS (ICCCN), 2018,
  • [28] Lightweight Deepfake Detection Based on Multi-Feature Fusion
    Yasir, Siddiqui Muhammad
    Kim, Hyun
    APPLIED SCIENCES-BASEL, 2025, 15 (04):
  • [29] Phishing Detection Based on Multi-Feature Neural Network
    Yu, Shuaicong
    An, Changqing
    Yu, Tao
    Zhao, Ziyi
    Li, Tianshu
    Wang, Jilong
    2022 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE, IPCCC, 2022,
  • [30] Tiny Object Detection using Multi-feature Fusion
    Yang, Peng
    Zhao, Yuejin
    Liu, Ming
    Dong, Liquan
    Liu, Xiaohua
    Hui, Mei
    MIPPR 2019: AUTOMATIC TARGET RECOGNITION AND NAVIGATION, 2020, 11429