Quality control, imputation and analysis of genome-wide genotyping data from the Illumina HumanCoreExome microarray

被引:55
|
作者
Coleman, Jonathan R. I. [1 ]
Euesden, Jack [2 ]
Patel, Hamel [2 ,3 ]
Folarin, Amos A. [4 ]
Newhouse, Stephen [4 ]
Breen, Gerome [2 ,5 ]
机构
[1] MRC Social Genet & Dev Psychiat Ctr SGDP, London, England
[2] SGDP, London, England
[3] South London & Maudsley NHS Trust, Natl Inst Hlth Res, Biomed Res Ctr Mental Hlth, Bioinformat Core, London, England
[4] NIHR, BRC MH, Bioinformat Core, London, England
[5] NIHR, BRC MH, Genom & Biomarkers & BioResource Mental & Neurol, London, England
关键词
GWAS; methods; low-coverage microarray; imputation; analysis; ASSOCIATION; MODEL; PLINK;
D O I
10.1093/bfgp/elv037
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The decreasing cost of performing genome-wide association studies has made genomics widely accessible. However, there is a paucity of guidance for best practice in conducting such analyses. For the results of a study to be valid and replicable, multiple biases must be addressed in the course of data preparation and analysis. In addition, standardizing methods across small, independent studies would increase comparability and the potential for effective meta-analysis. This article provides a discussion of important aspects of quality control, imputation and analysis of genome-wide data from a low-coverage microarray, as well as a straight-forward guide to performing a genome-wide association study. A detailed protocol is provided online, with example scripts available at https://github.com/JoniColeman/gwas_scripts.
引用
收藏
页码:298 / 304
页数:7
相关论文
共 50 条
  • [11] The effect of genome-wide association scan quality control on imputation outcome for common variants
    Lorraine Southam
    Kalliope Panoutsopoulou
    N William Rayner
    Kay Chapman
    Caroline Durrant
    Teresa Ferreira
    Nigel Arden
    Andrew Carr
    Panos Deloukas
    Michael Doherty
    John Loughlin
    Andrew McCaskie
    William E R Ollier
    Stuart Ralston
    Timothy D Spector
    Ana M Valdes
    Gillian A Wallis
    J Mark Wilkinson
    Jonathan Marchini
    Eleftheria Zeggini
    European Journal of Human Genetics, 2011, 19 : 610 - 614
  • [12] Assessment of genotyping array performance for genome-wide association studies and imputation in African cattle
    Valentina Riggio
    Abdulfatai Tijjani
    Rebecca Callaby
    Andrea Talenti
    David Wragg
    Emmanuel T. Obishakin
    Chukwunonso Ezeasor
    Frans Jongejan
    Ndudim I. Ogo
    Fred Aboagye-Antwi
    Alassane Toure
    Jahashi Nzalawahej
    Boubacar Diallo
    Ayao Missohou
    Adrien M. G. Belem
    Appolinaire Djikeng
    Nick Juleff
    Josephus Fourie
    Michel Labuschagne
    Maxime Madder
    Karen Marshall
    James G. D. Prendergast
    Liam J. Morrison
    Genetics Selection Evolution, 54
  • [13] Assessment of genotyping array performance for genome-wide association studies and imputation in African cattle
    Riggio, Valentina
    Tijjani, Abdulfatai
    Callaby, Rebecca
    Talenti, Andrea
    Wragg, David
    Obishakin, Emmanuel T.
    Ezeasor, Chukwunonso
    Jongejan, Frans
    Ogo, Ndudim, I
    Aboagye-Antwi, Fred
    Toure, Alassane
    Nzalawahej, Jahashi
    Diallo, Boubacar
    Missohou, Ayao
    Belem, Adrien M. G.
    Djikeng, Appolinaire
    Juleff, Nick
    Fourie, Josephus
    Labuschagne, Michel
    Madder, Maxime
    Marshall, Karen
    Prendergast, James G. D.
    Morrison, Liam J.
    GENETICS SELECTION EVOLUTION, 2022, 54 (01)
  • [14] Application of imputation methods to the analysis of rheumatoid arthritis data in genome-wide association studies
    Douglas K Childers
    Guolian Kang
    Nianjun Liu
    Guimin Gao
    Kui Zhang
    BMC Proceedings, 3 (Suppl 7)
  • [15] Genome-wide estimation of transcript concentrations from spotted cDNA microarray data
    Frigessi, A
    van de Wiel, MA
    Holden, M
    Svendsrud, DH
    Glad, IK
    Lyng, H
    NUCLEIC ACIDS RESEARCH, 2005, 33 (17) : 1 - 13
  • [16] Quality Control and Quality Assurance in Genotypic Data for Genome-Wide Association Studies
    Laurie, Cathy C.
    Doheny, Kimberly F.
    Mirel, Daniel B.
    Pugh, Elizabeth W.
    Bierut, Laura J.
    Bhangale, Tushar
    Boehm, Frederick
    Caporaso, Neil E.
    Cornelis, Marilyn C.
    Edenberg, Howard J.
    Gabriel, Stacy B.
    Harris, Emily L.
    Hu, Frank B.
    Jacobs, Kevin B.
    Kraft, Peter
    Landi, Maria Teresa
    Lumley, Thomas
    Manolio, Teri A.
    McHugh, Caitlin
    Painter, Ian
    Paschall, Justin
    Rice, John P.
    Rice, Kenneth M.
    Zheng, Xiuwen
    Weir, Bruce S.
    GENETIC EPIDEMIOLOGY, 2010, 34 (06) : 591 - 602
  • [17] Genome-wide microarray analysis of CpG island methylation
    Bhattacharjee, A.
    Pandit, K.
    Wong, A.
    Giles, S.
    Roberts, D.
    CANCER BIOMARKERS, 2008, 4 (03) : 169 - 169
  • [18] Genome-wide microarray analysis of horse sarcoid aberrations
    Pawlina, Klaudia
    Gurgul, Artur
    Szmatola, Tomasz
    Klukowska-Rotzler, Jolanta
    Koch, Christoph
    Maehlmann, Kathrin
    Bugno-Poniewierska, Monika
    CHROMOSOME RESEARCH, 2016, 24 : S43 - S43
  • [19] A genome-wide genotyping study in patients with ischaemic stroke:: initial analysis and data release
    Matarin, Mar
    Brown, W. Mark
    Scholz, Sonja
    Simon-Sanchez, Javier
    Fung, Hon-Chung
    Hernandez, Dena
    Gibbs, J. Raphael
    De Vrieze, Fabienne Wavrant
    Crews, Cynthia
    Britton, Angela
    Longefeld, Carl D.
    Brott, Thomas G.
    Brown, Robert D., Jr.
    Worrall, Bradford B.
    Frankel, Michael
    Silliman, Scott
    Case, L. Douglas
    Singleton, Andrew
    Hardy, John A.
    Rich, Stephen S.
    Meschia, James F.
    LANCET NEUROLOGY, 2007, 6 (05): : 414 - 420
  • [20] Imputation across genotyping arrays for genome-wide association studies: assessment of bias and a correction strategy
    Johnson, Eric O.
    Hancock, Dana B.
    Levy, Joshua L.
    Gaddis, Nathan C.
    Saccone, Nancy L.
    Bierut, Laura J.
    Page, Grier P.
    HUMAN GENETICS, 2013, 132 (05) : 509 - 522