Consistent estimation for an errors-in-variables model based on constrained total least squares problems

被引:0
|
作者
Aishima, Kensuke [1 ]
机构
[1] Hosei Univ, Fac Comp & Informat Sci, 3-7-2 Kajino Cho, Koganei, Tokyo 1130033, Japan
关键词
total least squares; singular value decomposition; regression model; errors-in-variables; consistency analysis; PERTURBATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct a natural errors-in-variables regression model corresponding to the total least squares (TLS) problem with linear equations constraints and prove strong consistency of the estimation. The presented asymptotic theory in the statistical sense is a generalization of the consistency analysis of an estimation with the use of ordinary total least squares for basic errors-in-variables regression models.
引用
收藏
页码:111 / 114
页数:4
相关论文
共 50 条
  • [21] Total least squares adjustment in inequality constrained partial errors-in-variables models: optimality conditions and algorithms
    Xie, Jian
    Lin, Dongfang
    Long, Sichun
    SURVEY REVIEW, 2022, 54 (384) : 209 - 222
  • [22] Improving the weighted least squares estimation of parameters in errors-in-variables models
    Xu, Peiliang
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (15): : 8785 - 8802
  • [23] Application of least squares variance component estimation to errors-in-variables models
    A. R. Amiri-Simkooei
    Journal of Geodesy, 2013, 87 : 935 - 944
  • [24] Application of least squares variance component estimation to errors-in-variables models
    Amiri-Simkooei, A. R.
    JOURNAL OF GEODESY, 2013, 87 (10-12) : 935 - 944
  • [25] Consistent estimation in the bilinear multivariate errors-in-variables model
    A. Kukush
    I. Markovsky
    S. Van Huffel
    Metrika, 2003, 57 : 253 - 285
  • [26] Consistent estimation in the bilinear multivariate errors-in-variables model
    Kukush, A
    Markovsky, I
    Huffel, SV
    METRIKA, 2003, 57 (03) : 253 - 285
  • [27] Parameter consistency and quadratically constrained errors-in-variables least-squares identification
    Palanthandalam-Madapusi, Harish J.
    van Pelt, Tobin H.
    Bernstein, Dennis S.
    INTERNATIONAL JOURNAL OF CONTROL, 2010, 83 (04) : 862 - 877
  • [28] Asymptotic normality of total least squares estimator in a multivariate errors-in-variables model AX = B
    Kukush, Alexander
    Tsaregorodtsev, Yaroslav
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2016, 3 (01): : 47 - 57
  • [29] A general partial errors-in-variables model and a corresponding weighted total least-squares algorithm
    Han, Jie
    Zhang, Songlin
    Li, Yali
    Zhang, Xin
    SURVEY REVIEW, 2020, 52 (371) : 126 - 133
  • [30] ERRORS IN VARIABLES - CONSISTENT ADJUSTED LEAST-SQUARES (CALS) ESTIMATION
    KAPTEYN, A
    WANSBEEK, T
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1984, 13 (15) : 1811 - 1837