Initial time difference quasilinearization method for fractional differential equations involving generalized Hilfer fractional derivative

被引:23
|
作者
Kucche, Kishor D. [1 ]
Mali, Ashwini D. [1 ]
机构
[1] Shivaji Univ, Dept Math, Kolhapur 416004, Maharashtra, India
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2020年 / 39卷 / 01期
关键词
Generalized Hilfer fractional derivative; Quasilinearization method; Initial time difference; Comparison theorems; STABILITY; SYSTEM;
D O I
10.1007/s40314-019-1004-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We build the quasilinearization method with initial time difference for nonlinear fractional differential equations (FDEs) involving generalized Hilfer fractional derivative under various conditions on the nonlinear function involved in the right hand side of the equation. An essential comparison result concerning lower and upper solutions is obtained for this generalized FDEs without demanding the Holder continuity assumption.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] On a Differential Equation Involving Hilfer-Hadamard Fractional Derivative
    Qassim, M. D.
    Furati, K. M.
    Tatar, N-E.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [22] Existence and Stability for Fractional Differential Equations with a ψ-Hilfer Fractional Derivative in the Caputo Sense
    He, Wenchang
    Jin, Yuhang
    Wang, Luyao
    Cai, Ning
    Mu, Jia
    MATHEMATICS, 2024, 12 (20)
  • [23] Existence theory of fractional coupled differential equations via ψ-Hilfer fractional derivative
    Harikrishnan, Sugumaran
    Shah, Kamal
    Kanagarajan, Kuppusamy
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2019, 27 (04) : 207 - 212
  • [24] Fractional Integro-Differential Equations with Nonlocal Conditions and ψ-Hilfer Fractional Derivative
    Abdo, Mohammed S.
    Panchal, Satish K.
    Hussien, Hussien Shafei
    MATHEMATICAL MODELLING AND ANALYSIS, 2019, 24 (04) : 564 - 584
  • [25] BOUNDARY VALUE PROBLEM FOR DIFFERENTIAL EQUATIONS WITH GENERALIZED HILFER-TYPE FRACTIONAL DERIVATIVE
    Benchohra, Mouffak
    Bouriah, Soufyane
    Nieto, Juan J.
    FIXED POINT THEORY, 2021, 22 (02): : 527 - 542
  • [26] GENERALIZED EXTENSION OF THE QUASILINEARIZATION METHOD FOR RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS
    Denton, Zachary
    DYNAMIC SYSTEMS AND APPLICATIONS, 2014, 23 (2-3): : 333 - 349
  • [27] A Numerical Method for Fractional Differential Equations with New Generalized Hattaf Fractional Derivative
    Hattaf, Khalid
    Hajhouji, Zakaria
    Ait Ichou, Mohamed
    Yousfi, Noura
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [28] A Numerical Method for Fractional Differential Equations with New Generalized Hattaf Fractional Derivative
    Hattaf, Khalid
    Hajhouji, Zakaria
    Ait Ichou, Mohamed
    Yousfi, Noura
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [29] Existence and stability of fractional differential equations involving generalized Katugampola derivative
    Bhairat, Sandeep P.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2020, 65 (01): : 29 - 46
  • [30] On a class of differential inclusions in the frame of generalized Hilfer fractional derivative
    Lachouri, Adel
    Abdo, Mohammed S.
    Ardjouni, Abdelouaheb
    Abdalla, Bahaaeldin
    Abdeljawad, Thabet
    AIMS MATHEMATICS, 2021, 7 (03): : 3477 - 3493