Hybrid machine learning in electrical impedance tomography

被引:0
|
作者
Rymarczyk, Tomasz [1 ,2 ,4 ]
Klosowski, Grzegorz [3 ]
Guzik, Miroslaw [1 ,4 ]
Niderla, Konrad [1 ,5 ]
Lipski, Jerzy [3 ]
机构
[1] Univ Econ & Innovat Lublin, Lublin, Poland
[2] Res & Dev Ctr Netrix SA, Lublin, Poland
[3] Lublin Univ Technol, Nadbystrzycka 38A, Lublin, Poland
[4] Univ Econ & Innovat, Projektowa 4, Lublin, Poland
[5] Lublin Univ Econ & Innovat, Projektowa 4, Lublin, Poland
来源
PRZEGLAD ELEKTROTECHNICZNY | 2021年 / 97卷 / 12期
关键词
electrical tomography; machine learning; industrial tomography;
D O I
10.15199/48.2021.12.35
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Artificial intelligence plays an increasingly important role in industrial tomography. In industry, various types of tomography can be used, where one of the criteria for classification may be a physical phenomenon. Thus, it is possible to distinguish computed tomography, impedance tomography, ultrasound tomography, capacitance tomography, radio-tomographic imaging, and others. The research described in this paper focuses on the EIT method used to imaging reactors' interior and industrial vessels. Inside the tested reactor, there may be a liquid of various densities containing solid inclusions or gas bubbles. The presented research presents the concept of transforming measurements into tomographic images using many known, homogeneous methods simultaneously. It is assumed that there is no single method of solving the inverse problem for all possible measurement cases. Depending on the specifics of the studied case, various methods generate reconstructions that differ in terms of accuracy and resolution. The presented research proves that the proposed approach justifies the increase in computational complexity, ensuring higher quality of tomographic images.
引用
收藏
页码:169 / 172
页数:4
相关论文
共 50 条
  • [21] A preconditioned hybrid reconstruction algorithm for electrical impedance tomography
    Fan, Wenru
    Wang, Huaxiang
    SEVENTH INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION AND CONTROL TECHNOLOGY: SENSORS AND INSTRUMENTS, COMPUTER SIMULATION, AND ARTIFICIAL INTELLIGENCE, 2008, 7127
  • [22] Use of machine learning to diagnose breast cancer from raw electrical impedance tomography data
    Korjenevsky, A. V.
    BIOMEDICAL ENGINEERING, 2024, 58 (03) : 208 - 212
  • [23] Machine Learning Approaches to Estimate Simulated Cardiac Ejection Fraction from Electrical Impedance Tomography
    Fonseca, Tales L.
    Goliatt, Leonardo
    Campos, Luciana C. D.
    Bastos, Flavia S.
    Barra, Luis Paulo S.
    dos Santos, Rodrigo W.
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2016, 2016, 10022 : 235 - 246
  • [24] Supervised Descent Learning for Thoracic Electrical Impedance Tomography
    Zhang, Ke
    Guo, Rui
    Li, Maokun
    Yang, Fan
    Xu, Shenheng
    Abubakar, Aria
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (04) : 1360 - 1369
  • [25] Ensemble learning for monitoring process in electrical impedance tomography
    Klosowski, Grzegorz
    Rymarczyk, Tomasz
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2022, 69 (02) : 169 - 178
  • [26] Deep Learning Scheme PSPNet for Electrical Impedance Tomography
    Wang, Peng
    Chen, Haofeng
    Ma, Gang
    Li, Rui
    Wang, Xiaojie
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2021, 2021, 11591
  • [27] Electrical impedance spectroscopy Machine learning in crystallization processes
    Karsch, Nicholas
    Westerdick, Stephan
    Musch, Thomas
    Kaufhold, Lars
    Dittmann, Marc
    Mallach, Malte
    Tebruegge, Jan
    Foerster, Jan
    Vogt, Michael
    ATP MAGAZINE, 2021, (08): : 88 - 93
  • [28] Machine learning-based signal quality assessment for cardiac volume monitoring in electrical impedance tomography
    Hyun, Chang Min
    Jang, Tae Jun
    Nam, Jeongchan
    Kwon, Hyeuknam
    Jeon, Kiwan
    Lee, Kyounghun
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (01):
  • [29] Multi-frequency symmetry difference electrical impedance tomography with machine learning for human stroke diagnosis
    McDermott, Barry
    Elahi, Adnan
    Santorelli, Adam
    O'Halloran, Martin
    Avery, James
    Porter, Emily
    PHYSIOLOGICAL MEASUREMENT, 2020, 41 (07)
  • [30] Improved Tactile Stimulus Reconstruction in Electrical Impedance Tomography Using the Discrete Cosine Transform and Machine Learning
    Husain, Zainab
    Liatsis, Panos
    IEEE SENSORS JOURNAL, 2024, 24 (14) : 22084 - 22095